
z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 1 of 31

IBM® z/OS® Version 1 Release 13 System SSL Cryptographic
Module

FIPS 140-2

Non-Proprietary Security Policy

Policy Version 1.03

IBM Systems & Technology Group
System z Development
Poughkeepsie, New York

IBM Research
Zurich Research Laboratory

February 24, 2012

© Copyright International Business Machines Corporation 2012
This document may be reproduced only in its original entirety without revision.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 2 of 31

Table of Contents

1 SCOPE OF DOCUMENT ...3

2 CRYPTOGRAPHIC MODULE SPECIFICATION...4

3 CRYPTOGRAPHIC MODULE SECURITY LEVEL ...5

4 PORTS AND INTERFACES ..6

5 ROLES, SERVICES AND AUTHENTICATION...6

5.1 ROLES..6

5.2 SERVICES...7

6 OPERATIONAL ENVIRONMENT...11

7 KEY MANAGEMENT ..15

8 PHYSICAL SECURITY..16

9 EMI/EMC ...19

10 SELF-TESTS ..19

10.1 SYSTEM SSL MODULE...19

10.2 CRYPTO EXPRESS3 ..20

11 OPERATIONAL REQUIREMENTS (OFFICER/USER GUIDANCE)...21

11.1 MODULE CONFIGURATION FOR FIPS 140-2 COMPLIANCE...21

11.2 DETERMINING MODE OF OPERATION...22

11.3 TESTING/PHYSICAL SECURITY INSPECTION RECOMMENDATIONS N ..23

12 MITIGATION OF OTHER ATTACKS ..23

13 CRYPTOGRAPHIC MODULE CONFIGURATION DIAGRAMS...23

14 APPLICATION PROGRAMMING INTERFACES (APIS)..26

15 GLOSSARY..30

16 REFERENCES ...31

17 TRADEMARKS...31

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 3 of 31

1 Scope of Document

This document describes the services that the z/OS System SSL library (“System SSL” or “module”) provides
to security officers and end users, and the policy governing access to those services. It complements official
product documentation, which concentrates on application programming interface (API) level usage and
environmental setup. [1]

Module Description The z/OS System SSL library in its FIPS 140-2 configuration consists of a set of loadable
modules. A portion of the System SSL shared library binaries consists of both 31- and 64-bit versions. The
deployed version consists of the following modules:

Table 1 System SSL Library Modules

31-bit 64-bit Auxiliary
GSKSSL GSKSSL64 GSKSCTSS
GSKS31F GSKS64F GSKSUS31
GSKCMS31 GSKCMS64 GSKSUS64
GSKC31F GSKC64F GSKMSGXT
GSKSRBRD GSKWTR
GSKSRBWT GSKSCTFT

IRRPVERS GSKS31
GSKSRVR GSKS64
GSKKYMAN GSKC31

 GSKC64
 GSKRACF
 IRRVERLD
 Header Files
 Side Decks
 Message Catalogs
 Sample Client/Server Application

The z/OS System SSL install package consists of the core modules that are utilized while operating in FIPS
140-2 mode, as well as some auxiliary modules and files. The auxiliary modules either provide functionality
that is not cryptographically relevant (sample applications) or are not utilized while operating in FIPS 140-2
mode. The files consist of header, side decks, message catalogs, sample client/server applications, sample
configuration scripts and component trace.

The z/OS System SSL logical and physical boundaries are described in Figures 1 and 2 in the Operational
Environment Section.

Note: Throughout this document,
• the Crypto Express3 cards will also be referenced using the terms CEX3, CEX3C, CEX3A, and 4765-
001

• the CP Assist for Cryptographic Functions will also be referenced using the terms CP Assist and CPACF.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 4 of 31

2 Cryptographic Module Specification

The z/OS System SSL module is classified as a multi-chip standalone software-hybrid module for FIPS Pub
140-2 purposes. The actual cryptographic boundary for this FIPS 140-2 module validation includes the System
SSL module running in configurations backed by hardware cryptography. The System SSL module consists of
software-based cryptographic algorithms, as well as symmetric and hashing algorithms provided by the CP
Assist for Cryptographic Function (CPACF), Elliptic Curve Cryptography provided by ICSF and RSA Hardware
clear key modular math cryptography provided through the Crypto Express cards (CEX3C and CEX3A). The
hardware support is accessed through the z/OS Integrated Cryptographic Services Facility (ICSF) acting as a
“pipe” between System SSL and the cryptographic cards.

Table 2 System SSL Module Components

Type/Name Version

Software Components
System SSL DLLs (APIs)
System SSL Executables

(GSKKYMAN, GSKSRVR)
RACF IRRPVERS
ICSF
Secure Channel

z/OS Version 1 Release 13 with System SSL level
HCPT3D0/JCPT3D1 with APAR OA36775, RACF level
HRF7780 and ICSF level HCR7780 with APAR OA36882

Hardware Components
CPACF

4765-001

CP Assist for Cryptographic Functions DES/TDES Enablement
Feature 3863 with System Driver Level 86E

Firmware – e1ced7a0
Hardware – 45D6048

System SSL validation was performed using the z/OS Version 1 Release 13 operating system with the
following platform configurations:
1. IBM zEnterprise™ 196 (z196) with CP Assist for Cryptographic Functions DES/TDES Enablement
Feature 3863 (Base GPC)

2. IBM zEnterprise™ 196 (z196) with CP Assist for Cryptographic Functions DES/TDES Enablement
Feature 3863 and Crypto Express3 card (Coprocessor (CEX3C))

3. IBM zEnterprise™ 196 (z196) with CP Assist for Cryptographic Functions DES/TDES Enablement
Feature 3863 and Crypto Express3 card (Accelerator (CEX3A))

4. IBM zEnterprise™ 196 (z196) with CP Assist for Cryptographic Functions DES/TDES Enablement
Feature 3863 and Crypto Express3 (Coprocessor (CEX3C) and Accelerator (CEX3A)) cards.

The module running on the above platforms was validated as meeting all FIPS Pub 140-2 Level 1 security
requirements. The z/OS System SSL module is packaged as a set of DLLs and executables which contains all
the code for the module. The library is accompanied by its primary header files, gskcms.h and gskssl.h. (Other
support files, such as auxiliary headers or link files are included in the distribution.)

See Section 13, Cryptographic Module Configuration Diagrams, for more information about the validated
platforms.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 5 of 31

In addition to the configurations tested by the laboratory, vendor-affirmed testing was performed using z/OS
Version 1 Release 13 on the following platforms

1. IBM System z10® Enterprise Class (z10 EC) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863 (Base GPC)

2. IBM System z10® Enterprise Class (z10 EC) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863 and Crypto Express3 card (Coprocessor (CEX3C))

3. IBM System z10® Enterprise Class (z10 EC) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863 and Crypto Express3 card (Accelerator (CEX3A))

4. IBM System z10® Enterprise Class (z10 EC) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863 and Crypto Express3 (Coprocessor (CEX3C) and Accelerator (CEX3A))
cards.

5. IBM System z10® Business Class (z10 BC) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863 (Base GPC)

Security level This document describes the security policy for the z/OS System SSL with Level 1 overall
security as defined in FIPS Pub 140-2 [2].

3 Cryptographic Module Security Level

The module is intended to meet requirements of Security Level 1 overall, with certain categories of security
requirements not applicable (Table 3).

Table 3 Module Security Level Specification

Security Requirements Section Level

Cryptographic Module Specification 3

Module Ports and Interfaces 1

Roles, Services and Authentication 1

Finite State Model 1

Physical Security 1

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of other attacks N/A

Overall 1

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 6 of 31

4 Ports and Interfaces

As a multi-chip standalone module, the System SSL physical interfaces are the boundaries of the host running
System SSL library code. The underlying logical interfaces of the module are the C language Application
Programming Interfaces (APIs) documented in the System SSL reference manual, `z/OS Cryptographic
Services Secure Sockets Layer Programming' [1] and the RACF callable service documented in the z/OS
Security Server RACF Callable Services manual.

Control inputs which control the mode of the module are provided through dedicated parameters of the public
gsk_fips_state_set API and the GSK_FIPS_STATE environment variable.

Data input and data output are provided in the variables passed on API and callable service invocations,
generally through user-supplied buffers. Hereafter, APIs and callable services will be referred to as “API”.

Status output is provided in return codes and through messages. Documentation for each API lists possible
return codes. A complete list of all return codes returned by the C language APIs within the System SSL
module is provided in the external header files. Messages are documented in the System SSL reference
manual, `z/OS Cryptographic Services Secure Sockets Layer Programming' and RACF manual, 'z/OS Security
Server RACF Messages and Codes'.

Cryptographic bypass capability is not supported by System SSL.

Module Status The System SSL library communicates any error status synchronously through the use of its
documented return codes. It is the responsibility of the calling application to handle exceptional conditions in a
FIPS 140-2 appropriate manner. For a textual description of the C language return code, applications can use
the gsk_strerror API.

System SSL is optimized for library use and does not contain any terminating assertions or exceptions. Any
internal error detected by System SSL and not induced by user data will be reflected back to the application
with an appropriate return code. The calling application must examine the return code and act in a FIPS 140-2
appropriate manner to such failures and reflect this error in a fashion consistent with this application.

User-induced or internal errors do not reveal any sensitive material to callers. Return codes and error
conditions are fully documented in the product’s programming documentation

5 Roles, Services and Authentication

5.1 Roles
The module supports two roles: a cryptographic officer (Officer) role and a User role (Table 4). The module
does not support user identification or authentication that would allow the module to distinguish between the
two supported roles. Each of the roles is authenticated through the operating system prior to using any system
services.

The Officer role is a purely administrative role that does not involve the use of cryptographic services. The role
is not explicitly authenticated but assumed implicitly on implementation of the module’s installation and usage
sections defined in the security rules section.

The User role has access to all of the module’s services. The role is not explicitly authenticated, but assumed
implicitly on access of any of the non-Officer services. An operator is implicitly in the User or Officer role based

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 7 of 31

upon the service(s) chosen. If any of the User-specific services are called, then the operator is in the User role;
otherwise the operator is in the Officer role.

Table 4 Roles and Authentication Mechanisms

Role Type of Authentication Authentication Data Strength of Mechanism
Officer None(Automatic) None N/A
User None(Automatic) None N/A

5.2 Services
The module provides queries and commands (Tables 7 and 8). Queries return status of commands or
command groups; commands exercise cryptographic functions. Officers perform queries; Users may perform
both queries and commands. While most test queries are not executed automatically as part of regular
operations, certain test queries are executed automatically; these special cases are parenthesized as (yes) in
Table 7.

Services are accessed through documented API interfaces from the calling application.

Certificate management services (CMS) perform both non-cryptographic and cryptographic PKI management
activities, as well as general cryptographic operations, such as signature verification. Functions in this group
parse and categorize X.509 certificates and transport certificates, and also handle standard encodings (such
as PKCS#7). Cryptographic operations, such as signature verification, are delegated to lower-level crypto core
functions.

SSL protocol implementation is split into infrastructure and protocol functions. Lower-level functions implement
SSL message formatting and other primitives. SSL protocol operations extend SSL primitives with handshake
state machines, session caching, and attribute parsing to provide a full SSL/TLS implementation. Both System
SSL layers use cryptographic cores indirectly. SSL 3.0 functionality is disallowed in FIPS 140-2 mode: all other
compliance checks are implemented at lower levels. In FIPS 140-2 mode, cipher suites are restricted to those
built with approved algorithms only.

Format conversions, labeled as “other operations", are other non-cryptographic commands that change the
representation of data. Format converters read and write, among others, the following formats:

• Various protocols based on ASN.1/BER encoded data (PKI-related and similar standard formats)

• Conversions between industry-standard object identifiers and internal symbolic constants (mainly
intrinsic, not externalized).

Protocol-level format conversions generally package data without modification, treating output or input of
lower-level crypto primitives as opaque data. The purpose of these conversions is to bridge protocols with
predefined formats with cryptographic primitives, which are oriented around raw byte streams or blocks, but
generally not standard encapsulation methods:

• Base-64 encoding (“ASCII armor"), generating and reading printable representation of binary data, for
example, encountered in certificates

• Conversions between ASCII and non-ASCII data (such as EBCDIC), non-cryptographic but potentially
modifying security-relevant data.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 8 of 31

Format conversion services do not provide cryptographic functionality, but may use other services if the
transport mechanism requires them. As an example, if signed data is represented as a standard ASN.1
structure, it implicitly uses one of the sign calls. Similarly, certificate management or processing of PKCS#7
data may involve signature verifications, for example.

For a list of API services available in the System SSL module, see Table 8.

`

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 9 of 31

Table 5 Services and Access

Service Notes Modes Approved
If yes,
Cert #

CSPs and Access

Software

Symmetric Algorithms

AES 128 or 256 bit keys
(FIPS 197)

CBC Yes
Cert #1864
 #1865

AES Symmetric
key

Read/
Write

Triple DES 168 bit keys CBC Yes
Cert #1210
 #1211

Triple DES
Symmetric key

Read/
Write

Public Key Algorithms

DSA
Key/Parameter
Generation

1024 bit modulus
(FIPS 186-2 key size)

N/A Yes
Cert #582
 #583

DSA public and
private key

Write

DSA Sign

1024 bit modulus N/A Yes
Cert #582
 #583

DSA private key Read

DSA Verify 1024 bit modulus N/A Yes
Cert #582
 #583

DSA public key Read

RSA Key
Generation

ANSI X9.31
(1024 to 4096 bits)

N/A Yes
Cert #947
 #948

RSA public and
private key

Write

RSA Sign

PKCS#1
(1024 to 4096 bits) 1

N/A Yes
Cert #947
 #948

RSA private key Read

RSA Verify PKCS#1
(1024 to 4096 bits)

N/A Yes
Cert #947
 #948

RSA public key Read

RSA Verify for
module integrity

PKCS #1 using SHA-256
(IRRPVERS)

N/A Yes
Cert #946

RSA public key Read

RSA
Wrapping/Unwrap
ping

PKCS#1
(1024 to 4096 bits)

N/A No RSA public and
private key

Read

Diffie-Hellman
(DH)

2048 bits modules Key
Agreement/
Generation

No DH public and
private key

Read/
Write

Hash Functions

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

FIPS 180-3 N/A Yes
Cert #1639
 #1640

None N/A

Message Authentication Codes (MACs)

HMAC-SHA1 FIPS 198, 198a N/A Yes
Cert #1110
 #1111

HMAC-SHA-1
key

Write

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 10 of 31

Service Notes Modes Approved
If yes,
Cert #

CSPs and Access

HMAC-MD5 Non security relevant
function within TLS protocol

N/A No HMAC-MD5 key Write

Random Number Generation

RNG FIPS 186-2 N/A Yes
Cert #977
 #978

Seed, Seed Key Write

CP Assist for Cryptographic functions

Symmetric Algorithms

AES 128 or 256 bit keys
(FIPS 197)

CBC Yes
Cert #1713

AES Symmetric
key

Read/
Write

Triple DES 168 bit keys CBC Yes
Cert #1103

Triple DES
Symmetric key

Read/
Write

Hash Functions

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

FIPS 180-3
SHA-2 algorithms

N/A Yes
Cert #1497

None N/A

4765-001 (Crypto Express3) – hybrid

Public Key Algorithms

RSA Verify

PKCS#1
(1024 to 4096 bits)

N/A Yes
Cert #944
 #945

RSA public key Read

RSA
Wrapping/Unwrap
ping

PKCS#1
(1024 to 4096 bits)

N/A No RSA public and
private key

Read

Notes:
1. Use of RSA private keys less than 2048 bits in length for digital signature generation is deprecated and should not

be used after 2013..

Table 6 Additional algorithms within cryptographic boundary in Non-FIPS mode

Service Notes

DES encryption/decryption Software
RC2 encryption/decryption Software
ArcFour encryption/decryption Software
MD2 Software
MD5 Software
DES CPACF
ECDSA Sign (Non-Compliant) Software
ECDSA Verify (Non-Compliant) Software

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 11 of 31

Table 7 Queries

Service Notes Roles
Module Status Officer User

Query mode Check if module is in FIPS 140-2 mode
(gsk_fips_state_query)

Yes Yes

Integrity Checks

Power-up Tests Automatic before first use
Includes gsk_perform_kat

(yes) No

Self-Tests gsk_perform_kat, IRRPVERS self-test
requires system IPL

Yes Yes

Operational Correctness Checks

RNG Tests Continuously performed (automatic) Yes Yes
Pair-wise
consistency

Continuously performed (automatic) Yes Yes

6 Operational Environment

Installation and Invocation

System SSL level HCPT3D0 and JCPT3D1, RACF level HRF7780 and ICSF HCR7780 are installed as part of
the z/OS Version 1 Release 13 ServerPac using the “Installing Your Order” documentation provided with the
ServerPac (prepackaged tailored z/OS installation including z/OS System SSL, ICSF and RACF). The tested
version of System SSL requires the installation of service provided through System SSL APAR OA36775 and
ICSF APAR OA36882.

The cryptographic modules are invoked via the APIs, gskkyman or GSKSRVR, as documented in the
programming documentation.

The module is accessed from C/C++ language programs through the inclusion of header file gskssl.h and/or
gskcms.h, or through the R_PgmSignVer callable service. The module is also accessed through the invocation
of the gskkyman certificate utility and GSKSRVR started task.

The hardware accelerator (CEX3A) and hardware coprocessor (CEX3C) are installed and configured by an
IBM customer engineer (CE). The hardware cards are selected and invoked through ICSF.

Module Operation

The System SSL security module is written mostly in C and PL/X, with certain functionality contained within
assembler, such as functions that utilize the CPACF. Extensive internal consistency checks verify both user
input and library configuration, terminating early if errors are encountered. Internal errors are externalized and
do not terminate execution, since the code has been developed mainly for library use.

Since System SSL can access certain platform-specific functionality, which is not represented in higher-level
languages, System SSL uses a mixture of high-level and platform-specific native code.

Using z/OS System SSL in a FIPS 140-2 approved manner assumes that the following defined criteria are
followed:

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 12 of 31

• The Operating System enforces authentication method(s) to prevent unauthorized access to Module
services.

• All host system components that can contain sensitive cryptographic data (main memory, system bus,
disk storage) must be located within a secure environment.

• The application using the module services must consist of one or more processes in which each
process is utilizing a separate copy of the executable code.

• The application designer must be sure that the application is designed correctly and does not corrupt the
storage in the address space where the instance of System SSL is loaded.

• The unauthorized reading, writing or modification of either the GSKSRVR started task or application
address space which contains the System SSL instance is not allowed.

• An instance of the System SSL Library DLLs must be accessed only by a single process (address
space). This means that each process has it own instance of the System SSL Library DLLs.

• The System SSL setup procedures documented in the programming documentation must be followed
and setup done correctly.

• The System SSL module must be initialized to execute in the FIPS 140-2 mode of operation. This is
accomplished through the gsk_fips_state_set API.

• The CP Assist for Cryptographic Functions DES/TDES Enablement Feature 3863 must be installed and
enabled.

• The Crypto Express3 cards are installed and operated by properly trained personnel in accordance with
the card's manual and installation procedures.

This module implements both approved and non-approved services. The calling application controls the
invocation of the services and the cryptographic material being supplied or used by the services. In FIPS 140-2
mode, the module only allows approved algorithms to be used in addition to RSA/Diffie-Hellman for key
establishment and exchange. The FIPS 140-2 configuration automatically inhibits parameter combinations that
are technically possible, but not permitted in FIPS 140-2 mode.

The z/OS System SSL Application Programming Interfaces (APIs), RACF Signature Verification callable
service (R_PgmSignVer), gskkyman certificate utility, GSKSRVR started task, ICSF, Secure Channel and
CEX3C and CEX3A represent the logical boundary of the module. The physical cryptographic boundary for the
module is defined as the enclosure of the host on which the cryptographic module is to be executed.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 13 of 31

 As shown in Figure 1, System SSL Cryptographic Module, the cryptographic module’s DLLs are instantiated
within an application’s address space. Each application or operating system component that utilizes the
System SSL cryptographic module will create a new instance of the z/OS System SSL DLLs. The System SSL
Started task (GSKSRVR) and ICSF, which serves as “pass through” to the Crypto Express3 coprocessor card,
are shared by instances of the System SSL DLLs loaded in the application address space(s) that are running
in the z/OS Operating System environment. The RACF Signature Verification (IRRPVERS) module performs
the initial integrity power-up tests.

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z CP

hardware

HSM-resident

clearkey engines

(modular math only)

CEX3C

CEX3Aand other

Application

The System SSL DLLs and SSL Started Task are considered within the cryptographic boundary. The System SSL DLLs may issue the System z CPACF
machine instructions to perform symmetric encryption and hashing cryptographic functions that are provided by these machine instructions.

System SSL Calls ICSF via ICSF callable services for ECC Digital Signature Generate and Verification and for accelerated modular math RSA functions.
System SSL invokes the ICSF RSA services with a clear RSA key and data to perform the following functions:
• Signature Verification
• Data Encryption and Decryption using the specified clear RSA Key

ICSF acts as a “pass-thru” routing the clear RSA key and data to the CEX3C or CEX3A which utilizes modular math hardware acceleration functions
provided by the PCI card hardware.

Note: RACF Program Verification handles ensuring the integrity of the modules within the cryptographic boundary.

Logical Cryptographic
Boundary is denoted by
the shaded boxes

System SSL

Started Task

(GSKSRVR)
1

3

1

2

3

Physical
Boundary

CPACF

2
RACF

Signature

Verification

(IRRPVERS)

Figure 1 System SSL Cryptographic Module

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 14 of 31

As shown in Figure 2, System SSL Cryptographic Module in a z/OS Sysplex Environment, a System SSL
cryptographic module may be deployed in a high availability environment where the application may in effect
be instantiated on multiple z/OS system instances configured in a “clustered” environment known as a parallel
sysplex. A parallel sysplex makes these systems behave like a single, logical computing facility. The
underlying structure of the parallel sysplex remains virtually transparent to users, networks, applications, and
even operations. If the cryptographic module is configured to enable session ID caching, the System SSL DLLs
invoke the GSKSRVR started task to determine if an applicable SSL session has been cached. This
GSKSRVR task utilizes a secure communication channel provided by the z/OS operating environment to
communicate with other instances of the GSKSRVR executing on other systems in the sysplex environment.

This figure shows the client negotiating a secure connection with Application Server 1 using a full handshake.
A second negotiation is performed using the cached session ID information with an identical server, Application
Server 2, using a resumed handshake. The resumed handshake utilizes the session ID cache information built
during the full handshake.

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z HW HSM-resident

clearkey engines

(modular math

only)

CEX3C

CEX3A

Application Server 1
System SSL

Started Task

(GSKSRVR)

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z HW
HSM-resident

clearkey engines
(modular math
only)

CEX3C

CEX3A

Application Server 2

System SSL

Started Task

(GSKSRVR)

Secure Channel

Application Server 1 invokes System SSL specifying sysplex session id caching to be enabled. System SSL services are invoked to negotiate a SSL session with

application server 1’s client and session id is stored in the cache managed by GSKSRVR.

Application Server 2 invokes System SSL specifying sysplex session id caching to be enabled. System SSL services is invoked to negotiate a SSL session with the

session id information from the connection in step 1 and 2.

z/OS System SSL invokes GSKSRVR to determine if an applicable session has been previously cached.
This may include an interrogation of other GSKSRVR managed caches on other z/OS sysplex members through a secure channel. If an applicable session cache
entry is not found a full handshake proceeds and session cache entry is constructed. If an applicable session entry is found either locally, or within the GSKSRVR

caches of other sysplexmembers, a resumed session handshake is performed.

When performing a full handshake, RSA functions available through the CEX3 cards are utilized by calling ICSF as a “passthru”.

SSL

session

11

55

11

22 55 55

Physical Boundary Logical Boundary

44

CPACF CPACF

AA

BB

33

AA BB

RACF

Signature
Verification
(IRRPVERS)

RACF
Signature
Verification
(IRRPVERS)

44

33

SSL

session

22

AA

BB

Figure 2 System SSL Cryptographic Module in a z/OS Sysplex Environment

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 15 of 31

7 Key Management

Key Storage The System SSL library retains key material within its address space. In a typical SSL/TLS
setting, private keys would be imported from a different key store. Public keys (certificates) would be
distributed through other channels, such as out-of-band PKI messages.

The module provides key import and export routines to applications such that key material can be used in
conjunction with cryptographic services. It is the responsibility of applications using library services to ensure
that these services are used in a FIPS 140-2 compliant manner. Keys managed or generated by applications
or libraries may be passed from applications to the module in the clear, provided that the sending application or
library exists within the physical boundary of the host computer.

Key material resides in memory as clear data or in a standard key store format. The most frequently used
standard formats, using passphrase-derived keys such as PKCS#12, are classified as clear-key storage
according to FIPS Pub 140-2 guidelines.

Key Generation Key Generation uses an approved RNG algorithm (specified in FIPS Pub 186-2) which is
based on SHA-1. The RNG has a maximum number of internal states of 2160, this maximum number reflecting
the limitation of the compression function in SHA-1. RSA DSA and DH key generation algorithms use the RNG
engine seeded with 20 bytes of true random data. This true random number generator extracts entropy from
time measurement jitter (minute variations of clock edges). The internal TRNG engine feeds entropy on
demand into the RNG; the TRNG itself maintains a running pool of samples, and provides seed if the pool
passes basic entropy content checks.

DSA key generation is done according to FIPS Pub 186-2. RSA key generation only implements the ANSI
X9.31 key generation method [3].

Key Establishment When in FIPS 140-2 mode, the module provides support for asymmetric key
establishment methods as allowed by Annex D in the FIPS Pub 140-2. The supported asymmetric key
establishment methods are RSA Wrapping/Unwrapping and Diffie-Hellman (DH) key agreement.

When using Diffie-Hellman in FIPS 140-2 mode, the allowed modulus length is 2048 bits, which provides 112
bits of encryption strength.

When using RSA Wrapping/Unwrapping in FIPS 140-2 mode, the allowed modulus lengths must be between
1024 and 4096 bits which provides between 80 and 150 bits of encryption strength. Use of a modules length
less than 2048 bits is not recommended.

Key Entry and Key Exit The module does not support manual key entry or intermediate key generation key
output.

The module does not output or input keys outside of the physical boundary, with the exception of secret keys
that are used for key establishment. The secret keys are wrapped with RSA.

Key Protection To enforce compliance with FIPS Pub 140-2 key management requirements on the System
SSL library itself, code issuing calls must manage keys in a FIPS Pub 140-2 compliant method. Keys managed
or generated by applications may be passed from the application to the module in the clear in the FIPS Pub
140-2 validated configuration.

The management and allocation of memory is the responsibility of the operating system. It is assumed that a
unique process is allocated for each request, and that the operating system and the underlying hardware

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 16 of 31

control access to the address space which contains the process that uses the module. Each instance of the
cryptographic module is self-contained within a process; the library relies on such process separation and
address separation to maintain confidentiality of secrets. All platforms used during FIPS Pub 140-2 validation
provide per-process protection for user data. Keys stored internally within the address range of System SSL
are similarly separated logically (even if they reside in the same address space).

All keys are associated with the User role. It is the responsibility of application program developers to protect
keys exported from the System SSL module.

Key Destruction Applications must destroy persistent key objects and similar sensitive information using FIPS
Pub 140-2 compliant procedures. The System SSL library itself does not destroy externally stored keys and
secrets, as it does not own or discard persistent objects. Objects, when released on behalf of a caller, are
erased before they are released.

8 Physical Security

The System SSL installation inherits the physical characteristics of the host running it. The System SSL library
has no physical security characteristics of its own. Figure 3 illustrates an IBM zEnterprise 196 (z196)
mainframe computer.

The CEX3A and CEX3C are hardware devices (see Figure 4) optionally installed to provide hybrid functionality
to the System SSL module. In order to meet FIPS Pub 140-2 requirements they must meet the physical
security requirements of Security Level 1. Security Level 1 is satisfied by the device (card) being included
within the physical boundary of the module and the device being made of commercial-grade components.

The CP Assist for Cryptographic Function (CPACF) (see Figure 5 and 6) offers the full complement of the
Triple DES algorithm, Advanced Encryption Standard (AES) algorithm and Secure Hash Algorithm (SHA).

CPACF Physical Design: Each two microprocessors (cores) on the quad-core chip share a Co-Processor Unit
(CoP), which implements the crypto instructions and also provides the hardware compression function. The
compression unit is integrated with the CP Assist for Cryptographic Function (CPACF), benefiting from
combining (sharing) the use of buffers and interfaces. The CoP is located on the processor die and is
connected to two cores and to L2 cache with dedicated buses.

The CP Assist for Cryptographic Function (CPACF) accelerates the encrypting and decrypting of SSL
transactions and VPN-encrypted data transfers and data-storing applications. The assist function uses a
special instruction set for symmetrical clear key cryptographic encryption and encryption operations. Five
special instructions are used with the cryptographic assist function.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 17 of 31

Figure 3 IBM zEnterprise 196 (z196) Mainframe Computer

Figure 4 Crypto Express3 Card.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 18 of 31

Figure 5 CPBOOK

z196 EC Multi-Chip Module (MCM)

z196 EC Processor Unit (PU)

z196 EC Processor Unit (PU)

• Cryptography integrated in the processor
z196 Processor Units
• Two Coprocessors (COPs) per PU
• Accelerator engines
• Data Compression
• Cryptographic functions

• COP is Shared by two cores

Figure 6 Processor Unit MCM with CPACF COP chips

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 19 of 31

9 EMI/EMC

EMI/EMC properties of System SSL are not meaningful for the library itself. Systems utilizing the System SSL
library services have their overall EMI/EMC ratings determined by the host system. The validation
environments have FCC Class A ratings.

EMI/EMC requirements for the CEX3A and CEX3C cards are met by the card's FCC Class B rating.

10 Self-Tests

10.1 System SSL Module

The System SSL library implements a number of self-tests to check proper functioning of the module including
power-up self-tests and conditional self-tests. Conditional tests are performed when symmetric or asymmetric
keys are generated. These tests include a continuous random number generator test and pair-wise
consistency tests of the generated DSA or RSA keys.

Startup Self-Tests “Power-up" self-tests consist of software integrity test(s) and known-answer tests of
algorithm implementations. The module integrity test is automatically performed during loading. If any of these
tests fail, the module will terminate the loading process. The module cannot be used in this state.

The integrity of the module is verified by checking an RSA/SHA-256-based digital signature of each module
binary prior to being utilized in FIPS 140-2 compliant mode. Initialization will only succeed if all utilized module
signatures are verified successfully. Module signatures are generated during the final phase of the build
process. The integrity verification involves IRRPVERS verifying its own digital signature. Once verified,
IRRPVERS verifies the digital signature of all other System SSL modules being utilized.

Algorithm known answer tests are performed when the application invokes gsk _fips_state_set to define FIPS
140-2 compliant mode and prior to any cryptographic algorithms being executed in FIPS 140-2 mode.

The module tests the following cryptographic algorithms: AES, Triple DES, RSA (sign/verify,
wrapping/unwrapping), DSA (sign/verify), SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, HMAC-SHA-1, and
the RNG.

Self-tests are performed in logical order, verifying library integrity incrementally:

1. Integrity test on library, using RSA/SHA-256
2. Known-answer tests on algorithms, from integrity-verified binary.

The integrity check process covers all constituent DLLs and executables. DLLs and executables are
individually signed and verified.

Startup Recovery If any of the startup self-tests fail, System SSL will terminate FIPS 140-2 processing.

Conditional Self-Testing Conditional self-testing includes continuous RNG testing. Continuous RNG testing
involves comparing every newly-generated RNG block with the previously-generated one. The first output
block generated by RNG is used only for the purpose of initiating the continuous RNG test. The test fails if the
RNG outputs the same value twice subsequently.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 20 of 31

If the RNG outputs identical, subsequent pseudo-random blocks, it enters an error state and returns the
corresponding status. The calling application must recognize this error and handle it in a FIPS 140-2
appropriate manner, for example, by reinitializing the library instance.

Similar to the RNG, high-entropy seed extracted by the TRNG is checked for repeated blocks, before seeding
the RNG. If blocks of entropy repeat, the TRNG reports a failure, which caller applications must also handle as
an error.

Pair-wise Consistency Checks This test is run whenever the module generates a private key. The private
key structure always contains either the data of the corresponding public key or information sufficient for
computing the corresponding public key.

If the pair-wise consistency check fails, the module enters an error state and returns an error status code. The
calling application must recognize this error and handle it in a FIPS 140-2 appropriate manner, for example, by
reinitializing the library instance.

Invoking FIPS 140-2 self-tests on demand. If a user can access System SSL services, the library has
passed its integrity and power-up self tests. During regular operations, an application can invoke the
gsk_perform_kat function to repeat the known answer tests on demand for the algorithms within the System
SSL library DLLs. If these checks pass, the module is working properly.

If a KAT failure is encountered, the module enters an error state and returns an error status code. The calling
application must recognize this error and handle it in a FIPS 140-2 appropriate manner, for example, by
reinitializing the library instance.

A system ipl is required for the RACF IRRPVERS module to repeat the known answer tests on demand.

10.2 Crypto Express3

The IBM Crypto Express3 features whether configured as an accelerator or coprocessor executes the following
self-tests upon every startup:

A configuration integrity test verifies firmware flash memory modules and code integrity. The initial and
continuous checks are basically identical, verifying memory checksums when required. The initial checks verify
integrity once before data is used for the first time. Non-modifiable firmware is checked for integrity through
embedded checksums. In case of checksum mismatch, the code halts itself or is not even permitted to
execute. This code is executed only at startup.

Functional integrity of hardware components is tested through a selected set of known answer tests, covering
all programmable components. The programmable devices verify their own code integrity, external tests verify
proper connectivity. CPU integrity is verified as part of power on self test before execution continues to load the
embedded operating system. These checks verify fundamental functionality, such as proper execution control,
load/store operations, register functions, integrity of basic logical and arithmetic operations, and so forth. Once
the CPU tests pass, CPU failures are monitored using other error-checking mechanisms (such as
parity checks of the PCI bus etc.)

FPGA integrity (communications firmware) is checked by the FPGA itself, through a checksum embedded in
the image, upon loading. If the test fails, the FPGA does not activate, and the card remains inaccessible.
After initialization, FPGA interfaces and internals are covered through parity checks internally, and external
end-to-end checks at higher logical levels. Crypto ASIC integrity is verified by comprehensive known-answer
tests at startup, covering all possible control modes. These tests implicitly cover FPGA transport as well, since

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 21 of 31

tests are performed using both available internal interfaces. During regular operations, the crypto ASIC covers
all traffic through combinations of redundant implementations, CRCs, and parity checks, in a way specific to
each crypto engine. Any failure is indicated as a hardware failure, to the module CPU and the host.

Modular math engine self-tests cover all possible control modes, and different sizes of modular arithmetic. The
modular math primitives’ testing covers only modular arithmetic, up to full exponentiation, but not algorithm
level (i.e., RSA or DSA protocols).

Interactive communications tests verify that the card PCI-X bus is functioning properly. As part of automatic
self-tests, critical functions tests cover the module CPU cache control logic (data and instruction), processor
registers, and instruction set; PCI-X bus transport integrity (including communication mailboxes), and RAM
module integrity.

In addition to startup tests, the Crypto Express3 executes conditional data tests that are applicable to its use in
this security policy are continuous integrity checks on modular math arithmetic (including RSA and DSA
operations), implemented in hardware.

To execute the self-tests on demand, the Crypto Express3 cards required a reboot from the hardware
management.

11 Operational Requirements (Officer/User Guidance)

11.1 Module Configuration for FIPS 140-2 Compliance
To verify FIPS 140-2 compliant usage, the following requirements must be observed:

• Administrators and users of System SSL must verify that the correct Security Manager Profiles have
been defined to ensure that startup integrity tests are performed. Each executable and DLL contains an
RSA/SHA-256 signature. The startup integrity tests ensure that the signatures match the expected
value. Once the module passes its startup integrity tests, the administrator or user must verify that the
module is still in FIPS 140-2 mode (through the gsk_fips state_query query).

• For applications exploiting Elliptic Curve Cryptography, ICSF must be configured to execute in FIPS
140-2 mode.

• Applications and libraries using System SSL features must observe FIPS Pub 140-2 rules for key
management and provide their own self-tests. If users of System SSL perform non-FIPS 140-2
compliant operations, they must indicate to the library that it is no longer in FIPS 140-2 mode (through
the gsk_fips_state_set call).

• For proper operations, the administrator or user must verify that applications comply with this
requirement. While details of these application requirements are outside the scope of this policy, they
are mentioned here for completeness.

• The Operating System (OS) hosting the library must be set up in accordance with FIPS Pub 140-2
rules. It must provide sufficient separation between processes to prevent inadvertent access to data of
different processes. (This requirement was met for all platforms tested during validation.)

• An instance of the module must not be used by multiple callers simultaneously such that they might
interfere with each other. Note that for keys retained in caller-provided storage, this requirement is
automatically met if the OS provides sufficient process separation (since the ownership of each

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 22 of 31

memory region, therefore, each object, is uniquely determined.)

• Applications using System SSL services must verify that ownership of keys is not compromised, and
keys are not shared between different users of the calling application.

Note that this requirement is not enforced by the System SSL library itself, but by the application
providing the keys to System SSL.

• Applications utilizing System SSL services must avoid using non-approved algorithms or modes of
operation. If not feasible, the applications must indicate that they use utilize non-approved
cryptographic services.

• To be in FIPS 140-2 mode, the System SSL installation must run on a host with commercial grade
components and must be physically protected as prudent in an enterprise environment.

o Physical assumptions
� The module is intended for application in user areas that have physical control and
monitoring. It is assumed that the following physical conditions will exist:

• LOCATION
o The processing resources of the module will be located within controlled
access facilities that will prevent unauthorized physical access.

• PROTECTION
o The module hardware and software critical to security policy enforcement
will be protected from unauthorized physical modification.

o Any sysplex communications shall be configured so that unauthorized
physical access is prevented.

o Personnel assumptions
� It is assumed that the following personnel conditions will exist:

• MANAGE
o There will be one or more competent individuals assigned to manage the
module and the security of the information it contains.

• NO EVIL ADMINISTRATOR
o The system administrative personnel are not careless, willfully negligent,
or hostile, and will follow and abide by the instructions provided by the
administrator documentation.

• CO-OPERATION
o Authorized users possess the necessary authorization to access at least
some of the information managed by the module and are expected to act
in a cooperative manner in a benign environment.

11.2 Determining Mode of Operation

The module provides a dedicated status query (gsk_fips_state_query). This function will start indicating FIPS
140-2 mode after all self-tests are successfully completed. Callers may switch into non-FIPS 140-2 mode
through a call to the status control function, gsk_fips_state_set.

To return to FIPS 140-2 mode after a mode change, the application must re-instantiate the library or
executable (i.e., reload it).

Applications utilizing services must enforce key management compliant with FIPS Pub 140-2 requirements.
This should be indicated in an application-specific way that is directly observable by administrators and end-

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 23 of 31

users.

While such application-specific details are outside the scope of the validation, they are mentioned here for
completeness.

In FIPS 140-2 mode, the module automatically restricts algorithms usage to approved or allowed algorithms
and inhibits parameter combinations that are technically legal but outside standardized range (such as
nonstandard DSA key sizes, short HMAC keys, etc.). Product documentation describes these additional
limitations.

11.3 Testing/Physical Security Inspection Recommendations

 In addition to automatic tests, which are described elsewhere in this document, System SSL users may invoke
FIPS 140-2 mode self-tests at any time. These self-tests are initiated through a dedicated function
(gsk_perform_kat), which is invoked automatically at startup. Continuous tests reside within their respective
functions and are called implicitly during the function processing. These tests are not observable unless a
failure is detected.

Apart from prudent security practice of server applications and those of security-critical embedded systems, no
further restrictions are placed on hosts utilizing these services.

12 Mitigation of Other Attacks

The Mitigation of Other attacks security section of FIPS 140-2 is not applicable to the System SSL
cryptographic module.

13 Cryptographic Module Configuration Diagrams

The following diagrams illustrate the different validated configurations. These validated configurations can
consist of a single z/OS System instance or multiple z/OS System instances.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 24 of 31

Figure 7 illustrates IBM zEnterprise 196 (z196) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863

LPAR/VM

virtualization

System SSL

z/OS

System z HW

Application 1
System SSL

Started Task

(GSKSRVR)

LPAR/VM

virtualization

System SSL

z/OS

System z HW

Application 2

System SSL

Started Task

(GSKSRVR)

Secure Channel

RACF Program Verification involves the verification of module digital signatures. It utilizes the CPACF for SHA-256 processing and contains it own software

version of the RSA Signature verification algorithm.

System SSL utilizes the CPACF for symmetric (TDES and AES) and hashing (SHA-1, SHA-2) algorithms.

11

22

Physical Boundary Logical Boundary

CPACF CPACF

22

RACF

Program
Verification
(IRRPVERS)

RACF
Program
Verification
(IRRPVERS)

11

11

22

Figure 7 Validated Configuration with CPACF only

Figure 8 illustrates IBM zEnterprise 196 (z196) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863 and Crypto Express3 cards (Coprocessor (CEX3C))

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z HW HSM-resident
clearkeyengines

(modular math
only)

CEX3C

Application 1
System SSL

Started Task

(GSKSRVR)

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z HWHSM-resident
clearkey engines

(modular math
only)

CEX3C

Application 2

System SSL

Started Task

(GSKSRVR)

Secure Channel

RACF Signature verification involves the verification of module digital signatures. It utilizes the CPACF for SHA-256 processing and contains it own software

version of the RSA Signature verification algorithm.

System SSL utilizes the CPACF for symmetric (TDES and AES) and hashing (SHA-1, SHA-2) algorithms.

System SSL utilizes RSA functions available through the CEX3C cards.

11

44

22

Physical Boundary Logical Boundary

44

CPACF CPACF

22

RACF

Signature
Verification
(IRRPVERS)

RACF
Signature
Verification

(IRRPVERS)

33

11

33

11

33

44

22

Figure 8 Validated Configuration with CPACF and CEX3C cards

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 25 of 31

Figure 9 illustrates IBM zEnterprise 196 (z196) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863 and Crypto Express3 cards (Accelerator (CEX3A)) configuration.

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z HW HSM-resident
clearkeyengines

(modular math
only)

CEX3A

Application 1
System SSL

Started Task

(GSKSRVR)

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z HWHSM-resident
clearkey engines

(modular math
only)

CEX3A

Application 2

System SSL

Started Task

(GSKSRVR)

Secure Channel

RACF Signature verification involves the verification of module digital signatures. It utilizes the CPACF for SHA-256 processing and contains it own software

version of the RSA Signature verification algorithm.

System SSL utilizes the CPACF for symmetric (TDES and AES) and hashing (SHA-1, SHA-2) algorithms.

System SSL utilizes RSA functions available through the CEX3A cards.

11

44

22

Physical Boundary Logical Boundary

44

CPACF CPACF

22

RACF

Signature
Verification
(IRRPVERS)

RACF
Signature
Verification

(IRRPVERS)

33

11

33

11

33

44

22

Figure 9 Validated Configuration with CPACF and CEX3A cards

Figure 10 illustrates IBM zEnterprise 196 (z196) with CP Assist for Cryptographic Functions DES/TDES
Enablement Feature 3863 and Crypto Express3 cards (Coprocessor (CEX3C) and Accelerator (CEX3A))
configuration.

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z HW HSM-resident
clearkeyengines

(modular math
only)

CEX3C

CEX3A

Application 1
System SSL

Started Task

(GSKSRVR)

ICSF

LPAR/VM

virtualization

System SSL

z/OS

System z HWHSM-resident
clearkey engines

(modular math
only)

CEX3C

CEX3A

Application 2

System SSL

Started Task

(GSKSRVR)

Secure Channel

RACF Signature verification involves the verification of module digital signatures. It utilizes the CPACF for SHA-256 processing and contains it own software

version of the RSA Signature verification algorithm.

System SSL utilizes the CPACF for symmetric (TDES and AES) and hashing (SHA-1, SHA-2) algorithms.

System SSL utilizes RSA functions available through the CEX3C and CEX3A cards.

11

44

22

Physical Boundary Logical Boundary

44

CPACF CPACF

22

RACF

Signature
Verification
(IRRPVERS)

RACF
Signature
Verification

(IRRPVERS)

33

11

33

11

33

44

22

Figure 10 Validated Configuration with CPACF, CEX3C and CEX3A cards

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 26 of 31

14 Application Programming Interfaces (APIs)

The following Services (APIs) in Table 8 can be executed by the user. The approved/allowed services used by
the APIs are:

• Triple DES, AES
• SHA-1, SHA2 (SHA-224, SHA-256, SHA-384 and SHA-512)
• HMAC-SHA, HMAC-MD5
• RSA sign/verify, wrapping/unwrapping, key generation
• DSA sign/verify, key parameter and key generation
• Diffie-Hellman key agreement and key generation
• RNG

Table 8 System SSL Module Services (APIs)

SSL Service Name Function Description
gsk_attribute_get_buffer Returns an attribute buffer value for an SSL environment or SSL connection
gsk_attribute_get_cert_info Returns local or partner certificate from an SSL handshake
gsk_attribute_get_data Returns information to the application about data in the certificate request SSL

handshake message
gsk_attribute_get_enum Returns an attribute enumerated value for an SSL environment or connection
gsk_attribute_get_numeric_value Returns an attribute numeric value for an SSL environment or connection
gsk_attribute_set_buffer Sets an attribute value for an SSL environment or SSL connection
gsk_attribute_set_callback Sets the application callback routines
gsk_attribute_set_enum Sets an attribute enum for an SSL environment or SSL connection
gsk_attribute_set_numeric_value Sets an attribute numeric value for an SSL environment or SSL connection
gsk_attribute_set_tls_extension Sets TLS extensions for an SSL environment or SSL connection
gsk_environment_close Closes an SSL environment
gsk_environment_init Establishes the SSL environment
gsk_environment_open Gets storage and initializes SSL default environment attributes
gsk_free_cert_data Free storage associated with returned certificate
gsk_get_all_cipher_suites Returns the available cipher suites
gsk_get_cert_by_label Gets information about a certificate
gsk_get_cipher_suites Determines the supported SSL ciphers
gsk_get_ssl_vector Gets addresses for all SSL functions
gsk_get_update Checks whether SAF key ring, key database file or PKCS#11 Token has

changed since certificates were read into the SSL environment
gsk_list_free Frees storage from gsk_attribute_get_data
gsk_secure_socket_close Closes an SSL connection
gsk_secure_socket_init SSL handshake is performed
gsk_secure_socket_misc SSL rehandshake is performed
gsk_secure_socket_open Gets storage and initializes SSL default connection attributes
gsk_secure_socket_read Performs a secure SSL read
gsk_secure_socket_shutdown Sends close notify alert message
gsk_secure_socket_write Performs secure SSL write
gsk_strerror Returns text string for an SSL or Certificate Management error code

Certificate Management Service Name Function Description
gsk_add_record Adds inputted record to a key or request database
gsk_change_database_password Changes the password associated with the key database file to the inputted

password
gsk_change_database_record_length Changes the record length of the key database record
gsk_close_database Closes the key or request database file
gsk_close_directory Unbinds from the LDAP directory
gsk_construct_certificate Constructs a signed X.509 certificate
gsk_construct_private_key Constructs a private key from its component values
gsk_construct_private_key_rsa Constructs an RSA private key from its component values

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 27 of 31

gsk_construct_public_key Constructs a public key from its component values
gsk_construct_public_key_rsa Constructs an RSA public key from its component values
gsk_construct_renewal_request Constructs a certification renewal request as described in PKCS #10
gsk_construct_self_signed_certificate Constructs a self-signed certificate
gsk_construct_signed_certificate Constructs a signed certificate from a certificate request
gsk_copy_attributes_signers Allocates storage and makes a copy of the inputted attribute signer info
gsk_copy_buffer Allocates storage and makes a copy of the inputted buffer info
gsk_copy_certificate Allocates storage and makes a copy of the inputted certificate
gsk_copy_certificate_extension Allocates storage and makes a copy of the inputted certificate extension
gsk_copy_certification_request Allocates storage and makes a copy of the inputted certificate request info
gsk_copy_content_info Allocates storage and makes a copy of the inputted content info
gsk_copy_crl Allocates storage and makes a copy of the inputted CRL
gsk_copy_name Allocates storage and makes a copy of the inputted name
gsk_copy_private_key_info Allocates storage and makes a copy of the inputted private key info
gsk_copy_public_key_info Allocates storage and makes a copy of the inputted public key info
gsk_copy_record Allocates storage and makes a copy of the inputted record
gsk_create_certification_request Creates a certificate request (PKCS#10) using the inputted information and

stores it in the request database. RSA/DSA Public/private keys are generated
gsk_create_database Create a key or request database
gsk_create_database_renewal_request Creates a PKCS#10 certification renewal request and adds it to the request

database
gsk_create_database_signed_certificate Creates a signed certificate as part of a set of certificates and adds it to the key

database
gsk_create_renewal_request Creates a renewal certificate request (PKCS#10) using the inputted certificate

info (includes public/private keys) and stores in the request database
gsk_create_self_signed_certificate Creates a self-signed certificate and stores it in the key database file
gsk_create_signed_certificate_record Creates a signed certificate using the inputted CA certificate and certificate

request and returns it in Base64 format
gsk_create_signed_certificate_set Creates a signed certificate using the inputted CA certificate and info about the

certificate being created and stores it in the key database file
gsk_create_signed_crl Creates a new X.509 CRL (RFC 2459) signed by the inputted certificate
gsk_create_signed_crl_record Creates a new X.509 CRL (RFC2459) signed by the inputted certificate
gsk_decode_base64 Decodes a Base64-encoded stream
gsk_decode_certificate Decodes an X.509 certificate
gsk_decode_certificate_extension Decodes an X.509 certificate extension
gsk_decode_certification_request Decodes a PKCS#10 certificate request
gsk_decode_crl Decodes an X.509 CRL
gsk_decode_import_certificate Decodes certificate from DER-Encoded or PKCS#7-encoded data stream
gsk_decode_import_key Decodes certificate and key from PKCS #12-encoded data stream
gsk_decode_name Decodes an ASN.1 DER-encoded X.509 name
gsk_decode_private_key Decodes an ASN.1 DER-encoded PKCS#8 private key
gsk_decode_public_key Decodes an ASN.1 DER-encoded public key
gsk_delete_record Deletes record from a key or request database file
gsk_dn_to_name Converts a DN name to a X.509 name
gsk_encode_base64 Encodes binary data using Base64 encoding
gsk_encode_certificate_extension Encodes a X.509 certificate extension
gsk_encode_ec_parameters Encodes the EC domain parameters for an ECC key
gsk_encode_export_certificate Encodes an X.509 certificate into a DER or PKCS#7 data stream
gsk_encode_export_key Encodes an X.509 certificate and its private key into a PKCS #12 data stream
gsk_encode_export_request Encodes a certification renewal request as described in PKCS #10
gsk_encode_private_key Encodes a private key (PKCS#8 format)
gsk_encode_public_key Encodes a public key
gsk_encode_signature Encodes an ASN.1 stream and the accompanying signature
gsk_export_certificate Returns the specified certificate (and public key) in either DER (binary/Base64)

or PKCS#7 (binary/Base64) format
gsk_export_certification_request Returns the specified certificate request in PKCS#10 format
gsk_export_key Returns the specified certificate and private key in PKCS#12 format
gsk_factor_private_key Factorizes a private key into its component values
gsk_factor_private_key_rsa Factorizes an RSA private key into its component values
gsk_factor_public_key Factorizes a public key into its component values
gsk_factor_public_key_rsa Factorizes an RSA public key into its component values
gsk_fips_state_query Returns the current FIPS mode
gsk_fips_state_set Sets either FIPS or Non-FIPS mode of operation

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 28 of 31

gsk_free_attributes_signers Frees storage obtained for gsk_attributes_signers structure
gsk_free_buffer Frees storage obtained for a buffer
gsk_free_certificate Frees storage obtained for a X.509 certificate
gsk_free_certificates Frees storage obtained for an array of X.509 certificates
gsk_free_certificate_extension Frees storage obtained for a X.509 certificate extension
gsk_free_certification_request Frees storage obtained for PKCS#10 certificate request
gsk_free_content_info Frees storage obtained for PKCS#7 content information
gsk_free_crl Frees storage obtained for a X509 certificate revocation list (CRL)
gsk_free_crls Frees storage obtained for an array of X.509 CRLs
gsk_free_decoded_extension Frees storage for a decoded certificate extension
gsk_free_name Frees storage for a X.509 name
gsk_free_private_key Frees storage allocated for private key information
gsk_free_private_key_info Frees storage for a private key information structure
gsk_free_public_key Frees storage allocated for public key information
gsk_free_public_key_info Frees storage for a public key information structure
gsk_free_record Frees storage for a database record
gsk_free_records Frees storage for an array of database records
gsk_free_string Frees storage for a string
gsk_free_strings Frees storage for an array of strings
gsk_generate_key_agreement_pair Generates a DH public/private key pair
gsk_generate_key_pair Generates a public/private key pair
gsk_generate_key_parameters Generates key parameters
gsk_generate_random_bytes Generates a random byte stream
gsk_generate_secret Generates the Diffie-Hellman shared secret
gsk_get_certificate_info Returns requested certificate information for an x.509 certificate
gsk_get_certificate_algorithms Gets the public key and certificate signature algorithms from a certificate
gsk_get_cms_vector Obtains the address of the CMS function vector
gsk_get_default_key Obtains the default certificate record in a key database file, SAF key ring or

PKCS#11 Token
gsk_get_default_label Gets the default certificate record in a key database file, SAF key ring or

PKCS#11 Token
gsk_get_directory_certificates Gets the certificates stored in a LDAP directory for the inputted subject name
gsk_get_directory_crls Gets the CRLs stored in a LDAP directory for the inputted issuer
gsk_get_directory_enum Gets an enumerated value from an LDAP directory
gsk_get_ec_parameters_info Get the named curve type and key size for EC domain parameters
gsk_get_record_by_id Gets a record from a key database or request database using the record

identifier
gsk_get_record_by_index Gets a record from a key database or request database using the record index
gsk_get_record_by_label Gets a record from a key database or request database using the record label
gsk_get_record_by_subject Gets the records from a key database or request database using the certificate

subject name
gsk_get_record_labels Gets the labels for all records in a key or request database
gsk_get_update_code Returns the current update code
gsk_import_certificate Imports a certificate into the key database file
gsk_import_key Imports a certificate chain and private key into the key database file
gsk_make_content_msg Creates a PKCS#7 content information message
gsk_make_data_content Creates PKCS#7 data content information from application data
gsk_make_data_msg Creates a PKCS#7 data message from application data
gsk_make_encrypted_data_content Creates PKCS#7 encrypted data content information. Not supported in FIPS

mode
gsk_make_encrypted_data_msg Creates a PKCS$7 encrypted data message from application data. Not

supported in FIPS mode
gsk_make_enveloped_data_content Creates PKCS#7 Enveloped Data content information
gsk_make_enveloped_data_content_extended Creates a PKCS#7 EnvelopedData content information
gsk_make_enveloped_data_msg Creates a PKCS#7 EnvelopedData message from application data
gsk_make_enveloped_data_msg_extended Creates a PKCS#7 EnvelopedData message from application data
gsk_make_signed_data_content Creates a PKCS#7 SignedData content information
gsk_make_signed_data_content_extended Creates a PKCS#7 SignedData content information
gsk_make_signed_data_msg Creates a PKCS#7 SignedData message from application data
gsk_make_signed_data_msg_extended Creates a PKCS#7 SignedData message from application data
gsk_make_wrapped_content Wraps the supplied content information in an ASN.1 sequence
gsk_mktime Converts year/month/day time value to number of seconds since the POSIX

epoch

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 29 of 31

gsk_name_compare Compares two X.509 names
gsk_name_to_dn Converts an X.509 name to a distinguished name string
gsk_open_database Opens a key or request database
gsk_open_database_using_stash_file Opens a key or request database using a stash file the database password
gsk_open_directory Opens an LDAP directory
gsk_open_keyring Opens a SAF key ring or PKCS#11 Token and constructs a read-only version of

the certificates in storage
gsk_perform_kat Performs known answer tests against FIPS approved/allowed algorithms
gsk_query_crypto_level Returns the available cryptographic levels
gsk_query_database_label Determines if a label exists in the in storage copy of a key database file, SAF key

ring or PKCS#11 Token
gsk_query_database_record_length Returns the record length for a key database file
gsk_rdtime Converts the number of seconds since the EPOCH to year/month/day
gsk_read_content_msg Processes a PKCS#7 message and returns the content information
gsk_read_data_content Processes a PKCS#7 Data content information and returns the application data
gsk_read_data_msg Processes a PKCS#7 message and returns the application data
gsk_read_encrypted_data_content Processes PKCS#7 EncryptedData content information. Not supported in FIPS

mode
gsk_read_encrypted_data_msg Processes PKCS#7 EncryptedData message and returns the decrypted

message content. Not Supported in FIPS mode
gsk_read_enveloped_data_content Processes the EnvelopedData content information
gsk_read_enveloped_data_content_extended Processes the EnvelopedData content information
gsk_read_enveloped_data_msg Processes a PKCS#7 EnvelopedData message
gsk_read_enveloped_data_msg_extended Processes a PKCS#7 EnvelopedData message
gsk_read_signed_data_content Processes PKCS#7 SignedData content information
gsk_read_signed_data_content_extended Processes PKCS#7 SignedData content information
gsk_read_signed_data_msg Processes PKCS#7 SignedData message
gsk_read_signed_data_msg_extended Processes PKCS#7 SignedData message
gsk_read_wrapped_content Processes the ASN.1 sequence containing the encoded content information
gsk_receive_certificate Receives X.509 certificates package
gsk_replace_record Replaces a record in the key database file
gsk_set_default_key Sets the default key (certificate) in a key database file
gsk_set_directory_enum Sets an enumerated value for an LDAP directory
gsk_sign_certificate Signs a certificate using the supplied RSA or DSA private key
gsk_sign_crl Signs a X.509 CRL using the supplied RSA or DSA private key
gsk_sign_data Signs a data stream using the supplied RSA or DSA private key
gsk_validate_certificate Validates the inputted certificate chain
gsk_validate_certificate_mode Validate the inputted certificate chaing according to RFC2459 or RFC3280
gsk_validate_hostname Validates a host certiifcate against the supplied hostname
gsk_validate_server Validates the inputted hostname against the inputted certificate
gsk_verify_certificate_signature Verifies the signature for an X.509 certificate. (RSA or DSA)
gsk_verify_crl_signature Verifies the signature for an X.509 CRL (RSA or DSA)
gsk_verify_data_signature Verifies the signature (RSA or DSA)

Deprecated SSL Service Name Function Description
gsk_free_memory Frees storage obtained by gsk_get_dn_ by_label
gsk_get_cipher_info Determines the supported SSL ciphers
gsk_get_dn_by_label Returns the distinguished name in the certificate identified by label
gsk_initialize Established the SSL
gsk_secure_soc_close Returns storage associated with an SSL connection
gsk_secure_soc_init Performs SSL handshake
gsk_secure_soc_read Performs a secure SSL read
gsk_secure_soc_reset SSL rehandshake is performed
gsk_secure_soc_write Performs a secure SSL write
gsk_srb_initialize Initializes an SRB
GSKSRBRD SSL Secure read in SRB
GSKSRBWT SSL secure write in SRB
gsk_uninitialize Returns storage for an SSL environment
gsk_user_set Sets the application callback routines for session id caching

Other Service Name Function Description
GSKSRVR GSKSRVR is started task that provides sysplex session cache support, dynamic

trace support and notification through messages when an application has
switched from using hardware to software for its cryptographic support.

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 30 of 31

gskkyman gskkyman is System SSL’s certificate utility. It provides certificate management
capabilities for both key database files and PKCS#11 tokens

R_PgmSignVer Provides support for verifying digital certificates associated with a load module

15 Glossary

Address space A set of contiguous virtual addresses available to a program and its data. The address
space is a container for enclaves and processes. [4] [5]

API Application Programming Interface

CEX3A Crypto Express3 Accelerator, mainframe name for IBM Hardware Security Modules (HSMs).

CEX3C Crypto Express3 Coprocessor, mainframe name for IBM Hardware Security Modules

(HSMs).

CPACF CP Assist for Cryptographic Function, clear key on-chip accelerator integrated into

mainframe processors. CPACF functionality is restricted to symmetric and hashing
operations.

DLL Dynamic Link Library, shared program library instantiated separately from binaries using it.

FIPS 140-2 configurations of ICSF PKCS #11 DLLs are never statically linked.

DRNG Deterministic Random Number Generator, a deterministic function expanding a “true

random” seed to a pseudo-random sequence.

Enclave In the z/OS Language Environment, a collection of routines, one of which is named as the

main routine. The enclave contains at least one thread. Multiple enclaves may be contained
within a process. [4] [5]

ICSF Integrated Cryptographic Service Facility

KAT Known Answer Test

OS Operating System

Process A collection of resources; both program code and data, consisting of at least one enclave.

[4] [5]

ServerPac Prepackaged version of the z/OS Operating System

Side deck The functions and variables that can be imported by DLL applications.

Thread An execution construct that consists of synchronous invocations and terminations of

routines. The thread is the basic run_time path within the z/OS Language Environment
program management model, and is dispatched by the operating system with its own run-

z/OS Version 1 Release 13 System SSL Security Policy

© Copyright IBM Corp. 2012 Page 31 of 31

time stack, instruction counter and registers. Thread may exist concurrently with other
threads within an address space. [4] [5]

TRNG True Random Number Generator, a service that extracts cryptographically-useful random

bits from non-deterministic (physical) sources. The “random seed” bits are post-processed
by a DRNG.

16 References

[1] z/OS Cryptographic Services Secure Sockets Layer Programming (SC24-5901-10)

[2] National Institute of Standards and Technology, Security Requirements for Cryptographic Modules (FIPS
140-2), 2002

[3] American National Standard Institute, Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (X9.31), 1998

[4] ABCs of z/OS System Programming Volume 1 (SG24-6981-01)

[5] ABCs of z/OS System Programming Volume 2 (SG24-6982-02)

17 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

• IBM
• RACF
• z9
• z10
• zEnterprise

• z/OS

