

FIPS 140-2 Non-Proprietary Security Policy

Concepteers Teleconsole TCS6U4W

Firmware Version 2.0

Document Version 1.3

October 18, 2011

FIPS 140-2 Non-Proprietary Security Policy: Concepteers Teleconsole TCS6U4W

Prepared For:

Prepared By:

Apex Assurance Group, LLC

530 Lytton Avenue, Ste. 200

Palo Alto, CA 94301

www.concepteers.com

www.apexassurance.com

Abstract

This document provides a non-proprietary FIPS 140-2 Security Policy for the Teleconsole TCS6U4W.

Table of Contents

1	Intr	roduction	.5
	1.1	About FIPS 140	5
	1.2	About this Document	.5
	1.3	External Resources	.5
	1.4	Notices	5
	1.5	Acronyms	5
2	Cor	ncepteers Teleconsole TCS6U4W	.7
	2.1	Product Overview	7
	2.2	Validation Level Detail	7
	2.3	Algorithm Implementations	.7
	2.3	3.1 FIPS-Approved Algorithms	7
	2.3	3.2 Non-Approved Algorithms	8
	2.4	Cryptographic Module Specification	.9
	2.5	Module Interfaces	.9
	2.6	Roles, Services, and Authentication	11
	2.0	6.1 Operator Services and Descriptions	11
	2.0	6.2 Operator Authentication	13
	2.7	Physical Security	14
	2.8	Operational Environment	14
	2.9	Cryptographic Key Management	15
	2.10	Self-Tests	18
	2.:	10.1 Power-On Self-Tests	18
	2.:	10.2 Conditional Self-Tests	19
	2.11	Mitigation of Other Attacks	19
3	Gui	dance and Secure Operation	20
	3.1	Crypto Officer Guidance	20
	3.:	1.1 Enabling FIPS Mode and General Guidance	20
	3.:	1.2 Placement of Tamper Evident Labels	20
	3.2	User Guidance	22
	3.2	2.1 General Guidance	22

List of Tables

Table 1 – Acronyms and Terms	6
Table 2 – Validation Level by DTR Section	7
Table 3 – Algorithm Certificates for FIPS-Approved Algorithms	8
Table 4 – Teleconsole TCS6U4W Interface Descriptions	10
Table 5 – Logical Interface / Physical Interface Mapping	11
Table 6 – Operator Services and Descriptions	13
Table 7 – Key/CSP Management Details	17

List of Figures

Figure 1 – Physical Boundary	9
Figure 2 – Tamper Evidence Labels Placement (Bottom)	21
Figure 3 – Tamper Evidence Labels Placement (Rear)	22

1 Introduction

1.1 About FIPS 140

Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Communications Security Establishment of Canada (CSEC) Cryptographic Module Validation Program (CMVP) runs the FIPS 140 program. The CMVP accredits independent testing labs to perform FIPS 140 testing; the CMVP also validates test reports for products meeting FIPS 140 validation. *Validated* is the term given to a product that is documented and tested against the FIPS 140 criteria.

More information is available on the CMVP website at http://csrc.nist.gov/groups/STM/cmvp/index.html.

1.2 About this Document

This non-proprietary Cryptographic Module Security Policy for the Teleconsole TCS6U4W from Concepteers provides an overview of the product and a high-level description of how it meets the security requirements of FIPS 140-2. This document contains details on the module's cryptographic keys and critical security parameters. This Security Policy concludes with instructions and guidance on running the module in a FIPS 140-2 mode of operation.

The Concepteers Teleconsole TCS6U4W may also be referred to as the "module" in this document.

1.3 External Resources

The Concepteers website (<u>http://www.concepteers.com</u>) contains information on the full line of products from Concepteers, including a detailed overview of the Teleconsole TCS6U4W solution. The Cryptographic Module Validation Program website

(<u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2011.htm</u>) contains links to the FIPS 140-2 certificate and Concepteers contact information.

1.4 Notices

This document may be freely reproduced and distributed in its entirety without modification.

1.5 Acronyms

The following table defines acronyms found in this document:

FIPS 140-2 Non-Proprietary Security Policy: Concepteers Teleconsole TCS6U4W

Acronym	Term
AES	Advanced Encryption Standard
CBC	Cipher Block Chaining
CMVP	Cryptographic Module Validation Program
CSEC	Communications Security Establishment of Canada
CSP	Critical Security Parameter
DTR	Derived Testing Requirement
ECB	Electronic Code Book
FIPS	Federal Information Processing Standard
GPC	General Purpose Computer
GPOS	General Purpose Operating System
HMAC	Hashed Message Authentication Code
IPSec	Internet Protocol Security
КАТ	Known Answer Test
LAN	Local Area Network
LED	Light Emitting Diode
NIST	National Institute of Standards and Technology
POST	Power On Self Test
PRNG	Pseudo Random Number Generator
RADIUS	Remote Authentication Dial In User Service
RAM	Random Access Memory
RNG	Random Number Generator
RSA	Rivest Shamir Adelman
SHA	Secure Hashing Algorithm
TDES	Tripe Data Encryption Standard
TLS	Transport Layer Security
USB	Universal Serial Bus
WAN	Wide Area Network

Table 1 – Acronyms and Terms

2 Concepteers Teleconsole TCS6U4W

2.1 Product Overview

The Concepteers Teleconsole TCS6U4W provides secure remote access to internal equipment and network resources.

The module acts as a secure application-layer gateway that intermediates all requests between remote computers and internal resources. All requests from remote computers to a Teleconsole appliance and from an appliance to remote computers are encrypted using TLSv1.0/HTTPS encryption. Users gain authenticated access to authorized resources via an extranet session hosted by the appliance. Each request is subject to administratively defined access control and authorization policies before the request is forwarded to an internal resource.

2.2 Validation Level Detail

The following table lists the level of validation for each area in FIPS 140-2:

FIPS 140-2 Section Title	Validation Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	3
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
Electromagnetic Interference / Electromagnetic Compatibility	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 2 – Validation Level by DTR Section

2.3 Algorithm Implementations

2.3.1 FIPS-Approved Algorithms

The cryptographic algorithm implementations of each module have received the following certificate numbers from the Cryptographic Algorithm Validation Program:

Algorithm Type	Algorithm	Standard	CAVP Certificate	Use
Asymmetric	RSA	ANSI X9.31	747	Sign / verify operations
Кеу		PKCS #1 v1.5		
		RSASSA-PSS		
	DSA	FIPS 186-2	476	Sign / verify operations
Hashing	SHA-1	FIPS 180-2	1369	Hashing
	SHA-224			
	SHA-256			
	SHA-384			
	SHA-512			
Keyed Hash	HMAC-SHA1	FIPS 198	895	Message verification
	HMAC-SHA224			Message digest
	HMAC-SHA256			
	HMAC-SHA384			
	HMAC-SHA512			
Symmetric Key	Triple-DES (CBC,	FIPS 46-3	1014	Data encryption /
	CFB8, CFB128, ECB,			decryption
	OFB modes)			
	AES (CBC, CFB8,	FIPS 197	1544	Data encryption /
	CFB128, ECB, OFB			decryption
	with 128, 192 or 256			
	bit keys)			
Random	X9.31	X9.31 (AES)	832	Random Number
Number				Generation
Generation				

Table 3 – Algorithm Certificates for FIPS-Approved Algorithms

2.3.2 Non-Approved Algorithms

The module implements the following non-approved algorithms:

- Diffie-Hellman (allowed for use in FIPS 140 mode of operation)
 - Used for key agreement/key establishment and supports 80-bits to 112-bits of encryption strength
- Wireless encryption algorithms
 - WPA2 (AES CTR, AES MAC)
 - o WPA
 - WEP (RC4)
- RSA (key wrapping; key establishment)
 - Provides between 80-bits and 112-bits of encryption strength.

The following algorithms are deprecated and will be disallowed according to timelines specified in NIST SP 800-131A:

• RSA (1024-bit)

- DSA (1024-bit)
- SHA-1
- HMAC-SHA1
- RNG
- Diffie-Hellman

Two-Key Triple DES is actually restricted; a key should only be used to encrypt more than 2^20 blocks of data.

2.4 Cryptographic Module Specification

The module is the Concepteers Teleconsole TCS6U4W running firmware version 2.0 on hardware rev A2. The module is classified as a multi-chip standalone cryptographic module. The physical cryptographic boundary is defined as the module case and all components within the case. The antenna and associated functionality is excluded from validation.

The physical boundary is pictured in the image below:

Figure 1 – Physical Boundary

2.5 Module Interfaces

The table below describes the main physical interfaces of the module:

Physical Interface

Description / Use

Physical Interface	Description / Use	
LEDs	For power indication:	
	 Unlit—system is powered off 	
	 Blue—system powered on and running. 	
	Hard Drive Activity	
	 Blinking red – hard drive activity 	
RS-232 Serial Ports	For serial connections to devices	
Antenna Connector	Capability for a wireless connection. Note this is excluded from validation	
	as this interface does not process keys or CSPs, even if the wireless is	
	malfunctioning, misused, or is in an error state.	
USB Ports	For USB connections to devices	
WAN GbE Port	Wired connection to a Wide Area Network, to the Internet, or to an	
	Internet Gateway	
LAN GbE Port	Wired connection to the Local Area Network	
Power Jacks	Provides power to the appliance	
On/Off Switch	Powers on/off the appliance	
VGA Port	Displays console status information	
Reset Button	Initiates module restart	
Audio Jack	Provides a port for headphones or speakers for audio details	

Table 4 – Teleconsole TCS6U4W Interface Descriptions

Each module provides a number of physical and logical interfaces to the device, and the physical interfaces provided by the module are mapped to four FIPS 140-2 defined logical interfaces: data input, data output, control input, and status output. The logical interfaces and their mapping are described in the following table:

FIPS 140-2 Logical Interface	Module Physical Interface
Data Input	RS-232 Serial Ports
	Antenna Connector
	USB Ports
	WAN GbE Port
	LAN GbE Port
Data Output	RS-232 Serial Ports
	Antenna Connector
	USB Ports
	WAN GbE Port
	LAN GbE Port
Control Input	Antenna Connector
	WAN GbE Port
	LAN GbE Port
	On/Off Switch
	Reset Button

FIPS 140-2 Logical Interface	Module Physical Interface
Status Output	Antenna Connector
	WAN GbE Port
	LAN GbE Port
	VGA Port
	LEDs
	Audio Jack
Power	Power Jacks

Table 5 – Logical Interface / Physical Interface Mapping

2.6 Roles, Services, and Authentication

There are two roles (a Crypto Officer role and User role) in the module that operators may assume, and the respective services for each role are described in the following sections. The module supports identity-based authentication.

2.6.1 Operator Services and Descriptions

The services available to the User and Crypto Officer roles in the module are as follows:

Service	Description	CSP	Roles
Configure	Initializes the module for FIPS mode of	Operator Passwords	Crypto
	operation		Officer
Decrypt	Decrypts a block of data using AES or	TLS Session Keys	Crypto
	TDES		Officer
			User
Encrypt	Encrypts a block of data using AES or	TLS Session Keys	Crypto
	TDES		Officer
			User

Service	Description	CSP	Roles
Generate	Generates keys for TLS operations	TLS Session Keys	Crypto
Keys		Session Certificate	Officer
		Diffie Hellman Public Key	User
		Diffie Hellman Private Key	
		RSA Public Key	
		RSA Private Key	
		DSA Public Key	
		DSA Private Key	
		HMAC key for message	
		verification	
		Premaster Secret	
		Master Secret	
		RNG XKEY	
		RNG XSEED	
Self-Test	Perform Self Tests	HMAC key (for module	Crypto
		integrity)	Officer
		Diffie Hellman Public Key	User
		Diffie Hellman Private Key	
		RSA Public Key	
		RSA Private Key	
		DSA Public Key	
		DSA Private Key	
Sign	Signs a block of data	Diffie Hellman Private Key	Crypto
		RSA Private Key	Officer
		DSA Private Key	User
Verify	Verifies the signature of a signed block	Diffie Hellman Public Key	Crypto
	of data	RSA Public Key	Officer
		DSA Public Key	User

Service	Description	CSP	Roles
Zeroize CSPs	Clears CSPs and certificates from	TLS Session Keys	Crypto
	memory. Note that the "Delete	Session Certificate	Officer
	Certificate" option in the GUI is part of	Diffie Hellman Public Key	User
	the service	Diffie Hellman Private Key	
		RSA Public Key	
		RSA Private Key	
		DSA Public Key	
		DSA Private Key	
		HMAC key for message	
		verification	
		Operator Passwords	
		Premaster Secret	
		Master Secret	
		RNG XKEY	
		RNG XSEED	
Show Status	Shows status of the module. FIPS	None	Crypto
	mode is indicated via check box in the		Officer
	GUI.		User
User	Manage user permissions	Operator Passwords	Crypto
Management			Officer

Table 6 – Operator Services and Descriptions

2.6.2 Operator Authentication

2.6.2.1 Password-Based Authentication

In FIPS-approved mode of operation, the module is accessed via Graphical User Interface from a remote workstation. Other than status functions available by viewing LEDs, the services described in Table 6 – Operator Services and Descriptions are available only to authenticated operators.

The module supports identity-based authentication. Passwords must be a minimum of 6 characters (see Guidance and Secure Operation section of this document). The password can consist of alphanumeric values and special characters, $\{a-z\}, \{A-Z\}, \{0-9\}, \{\sim:@\#\%\%\&*()_+=\{\}[]\];:"",./<>?]$, yielding 93 choices per character. The probability of a successful random attempt is $1/93^6$, which is less than 1/1,000,000.

The module will lock an account after 3 failed authentication attempts; thus, the maximum number of attempts in one minute is 3. Therefore, the probability of a success with multiple consecutive attempts in a one-minute period is $3/93^6$ which is less than 1/100,000.

2.6.2.2 Certificate-Based Authentication

The module also supports authentication via digital certificates. The module supports identity-based authentication via a public key with 1024-bit, and 2048-bit RSA keys. A 1024-bit RSA key has at least 80-bits of equivalent strength. The probability of a successful random attempt is $1/2^{80}$, which is less than 1/1,000,000. Assuming the module can support 60 authentication attempts in one minute, the probability of a success with multiple consecutive attempts in a one-minute period is $60/2^{80}$ which is less than 1/100,000.

A 2048-bit RSA key has at least 112-bits of equivalent strength. The probability of a successful random attempt is $1/2^{112}$, which is less than 1/1,000,000. Assuming the module can support 60 authentication attempts in one minute, the probability of a success with multiple consecutive attempts in a one-minute period is $60/2^{112}$ which is less than 1/100,000.

2.7 Physical Security

The module is a multiple-chip standalone module and conforms to Level 2 requirements for physical security. For details on tamper evidence, please see Section 3.1.2 – Placement of Tamper Evident Labels.

2.8 Operational Environment

The module operates in a limited operational model and do not implement a General Purpose Operating System.

The module meets Federal Communications Commission (FCC) FCC Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) Class A requirements as defined by 47 Code of Federal Regulations, Part15, Subpart B.

2.9 Cryptographic Key Management

The table below provides a complete list of Critical Security Parameters used within the module:

Keys and CSPs	Storage	Storage	Input	Input	Output	Output	Generated	Zeroized	Access
	Locations	Method		Method		Method			
TLS Session Keys	RAM	Plaintext	No	NA	Yes	Encrypted	Yes (FIPS	Yes (Reset ¹)	CO
(TDES, AES)						with	Approved RNG)		RWD
						Premaster			
						Secret			User
									RWD
Session	On disk	Plaintext	No	NA	Yes	Plaintext	Generated by	Yes (Reset)	CO
Certificate						during TLS	the module		D
(X.509v3)						negotiation	during the		
							installation /		User
							initialization		RWD
							process		
Diffie Hellman	RAM	Plaintext	No	NA	Yes	Plaintext	Yes (FIPS	Yes (Reset	CO
Public Key						during TLS	Approved RNG)	or generate	RWD
						negotiation		new value)	
Diffie Hellman	RAM	Plaintext	No	NA	No	NA	Yes (FIPS	Yes (Reset	CO
Private Key							Approved RNG)	or generate	RWD
								new value)	
RSA Dublic Kov	PAM	Plaintext	No	ΝΑ	Voc	Plaintext	Voc (EIDS	Vec (Deleta	<u> </u>
NJA PUDIL NEY		FIGILILEXL		INA	162		Approved BNC)	Cortificate)	
							Approved KNG)	Certificate)	RWD
1						negotiation			

¹ References to "reset" in this table indicate reimaging the module to reload the firmware and initiate FIPS mode

Keys and CSPs	Storage	Storage	Input	Input	Output	Output	Generated	Zeroized	Access
	Locations	Method		Method		Method			
RSA Private Key	RAM	Plaintext	No	NA	No	NA	Yes (Generated	Yes (Delete	СО
							according to the	Certificate)	RWD
							X9.31 standard)		
DSA Public Key	RAM	Plaintext	No	NA	Yes	Plaintext	Yes (FIPS	Yes (Delete	CO
						during TLS	Approved RNG)	Certificate)	RWD
						negotiation			
DSA Private Key	RAM	Plaintext	No	NA	No	NA	Yes (FIPS	Yes (Delete	CO
							Approved RNG)	Certificate)	RWD
HMAC key (160-	RAM	Plaintext	No	NA	Yes	Wrapped with	Yes (FIPS	Yes (Reset	CO
bit HMAC-SHA1						RSA/DSA	Approved RNG)	or generate	RWD
for message						Public Key		new value)	
verification)									
Operator	On disk	Plaintext	Yes	Electronic	No	NA	No	Yes (Reset	CO
Passwords								or generate	RWD
								new value)	
									User
									RWD
Dromactor Socrat	DANA	Dipintovt	No	ΝΑ	Voc	Encryptod		Voc (Pocot	<u> </u>
(48 Putos)	RAIVI	Plaintext	NO	NA	res	Eliciypted	Approved BNC)	res (Reset	
(40 byles)						Koy	Approved RNG)		D
						Ney		new value)	llcor
									D
Mactor Socrat	DANA	Dipintovt	No	ΝΑ	No	NA		Voc (Pocot	0
(48 Dutos)	RAIVI	Plaintext	NO	NA	NO	INA	Tes (FIPS	res (Reset	
(48 Bytes)							Approved KNG)	or generate	U
								new value)	Llaar
									User
									ט

Keys and CSPs	Storage	Storage	Input	Input	Output	Output	Generated	Zeroized	Access
	Locations	Method		Method		Method			
RNG XKEY	RAM	Plaintext	No	NA	No	NA	Yes (system	Yes (Reset	CO
							entropy)	or generate	D
								new value)	
									User
									D
RNG XSEED	RAM	Plaintext	No	NA	No	NA	Yes (system	Yes (Reset	CO
							entropy)	or generate	D
								new value)	
									User
									D

R = Read W = Write D = Delete

Table 7 – Key/CSP Management Details

Private, secret, or public keys are protected from unauthorized modification and substitution. The module ensures only authenticated operators have access to keys and functions that can generate keys. Unauthenticated operators do not have write access to modify, change, or delete private, secret, or public keys.

2.10 Self-Tests

The module includes an array of self-tests that are run during startup and periodically during operations to prevent any secure data from being released and to ensure all components are functioning correctly. In the event of any self-test failure, the module will output an error dialog and will enter an error state. When the module is in an error state, no keys or CSPs will be output and the module will not perform cryptographic functions.

The module does not support a bypass function.

The following sections discuss the module's self-tests in more detail.

2.10.1 Power-On Self-Tests

Power-on self-tests are run upon every initialization of the module and if any of the tests fail, the module will enter an error state and no services can be accessed by the users. The module implements the following power-on self-tests:

- Module integrity check via CRC32
- RSA pairwise consistency key (signing and signature verification)
- RSA KAT
- DSA pairwise consistency key (signing and signature verification)
- TDES KAT (encryption and decryption on all modes and implementations)
- AES KAT (encryption and decryption on all modes, key sizes, and implementations)
- SHA-1, SHA-256, and SHA-512 KAT (on all implementations)
- HMAC-SHA1, HMAC-SHA256 and HMAC-SHA512 (on all implementations)
- PRNG KAT

The module performs all power-on self-tests automatically when the module is initialized. All power-on self-tests must be passed before a User/Crypto Officer can perform services. The Power-on self-tests can be run on demand by rebooting the module in FIPS approved Mode of Operation.

2.10.1.1 Status Output

An operator can discern that all power-on self-tests have passed via normal operation of the module and the following log message.

FIPS mode initialized and running

In the event the integrity check fails, the module will output the following message:

Integrity check failed. Can not start

In the event a POST fails, the module will output the following log message:

FIPS mode failed; reverting to non-FIPS mode

Note that data output will be inhibited while the module is in an error state (i.e., when a POST fails). No keys or CSPs will be output when the module is in an error state.

2.10.2 Conditional Self-Tests

Conditional self-tests are test that run continuously during operation of the module. If any of these tests fail, the module will enter an error state. The module can be restarted to clear the error and resume FIPS mode of operation. No services can be accessed by the operators. The module performs the following conditional self-tests:

- Pairwise consistency test for RSA implementations
- Pairwise consistency test for DSA implementations
- Continuous RNG test run on output of ANSI X9.31 PRNG
- Continuous test on output of ANSI X9.31 PRNG seed mechanism
- Continuous test to ensure seed and seed key are not the same values

The module does not perform a software load test because no additional software/firmware can be loaded in the module while operating in FIPS-approved mode.

2.10.2.1 Status Output

In the event a conditional self test fails, the module will output the following log message:

```
FIPS Conditional Test Failed
```

Note that data output will be inhibited while the module is in this error state. No keys or CSPs will be output when the module is in an error state.

2.11 Mitigation of Other Attacks

The module does not mitigate attacks.

3 Guidance and Secure Operation

This section describes how to configure the module for FIPS-approved mode of operation. Operating the module without maintaining the following settings will remove the module from the FIPS-approved mode of operation.

3.1 Crypto Officer Guidance

3.1.1 Enabling FIPS Mode and General Guidance

FIPS Mode is enabled by checking the "FIPS Mode" box in Teleconsole Administration / Configuration / Server Setup. Enabling FIPS mode will open/lock down features where appropriate (e.g., enabling self tests).

Additionally, the Crypto Officer must configure and enforce the following initialization procedures in order to operate in FIPS approved mode of operation:

- Verify that the firmware version of the module is Version 2.0. No other version can be loaded or used in FIPS mode of operation.
- Ensure the labels are placed in the proper position as shown in Figure 2 Tamper Evidence Labels Placement (Bottom).
- Inspect the tamper evident labels periodically to verify they are intact.
- All operator passwords must be a minimum of 6 characters in length. The maximum password length is set by the Crypto Officer. The default maximum length is 16 characters. The largest possible maximum password length is 99 characters.
- Do not disclose passwords and store passwords in a safe location and according to his/her organization's systems security policies for password storage.
- Keys and CSPs shall be zeroized when transitioning to a FIPS mode from non-FIPS mode.
- Using the backup feature is not allowed in FIPS mode of operation. The Crypto Officer shall not use the Backup function.
- Importing RSA/DSA private keys is not allowed in FIPS mode of operation. The Crypto Officer shall not import private keys.

3.1.2 Placement of Tamper Evident Labels

To meet Physical Security Requirements for Level 2, the module enclosure must be protected with tamper evident labels. The tamper evident labels shall be installed for the module to operate in a FIPS

Approved mode of operation. Concepteers applies the labels at time of manufacture and allows a cure time of 72 hours; the Crypto Officer is responsible for ensuring the labels are applied as shown below. If the module shows signs of tampering, the Crypto Officer shall reimage the module² and follow all Guidance to place the module in FIPS mode.

The Crypto Officer is responsible for

- Maintaining the direct control and observation of any changes to the module such as
 reconfigurations where the tamper evident seals or security appliances are removed or installed
 to ensure the security of the module is maintained during such changes and the module is
 returned to a FIPS-approved state.
- Ensuring that the non-approved algorithms for wireless encryption are not used in FIPSapproved mode of operation.
- Verifying the labels are attached to the appliance as shown in the illustration below

Figure 2 – Tamper Evidence Labels Placement (Bottom)

² Firmware is obtained from Concepteers and is loaded via Teleconsole Administration / Firmware Upgrade as specified in the Teleconsole administration guide.

Figure 3 – Tamper Evidence Labels Placement (Rear)

If one of the labels is tampered, the Crypto Officer shall reimage the module to reload the firmware, zeroize all keys and CSPs, and have the tamper labels reapplied. Note that Concepteers does not offer the purchase of additional labels. If labels need to be replaced, please contact Concepteers.

3.2 User Guidance

3.2.1 General Guidance

The User must not disclose passwords and must store passwords in a safe location and according to his/her organization's systems security policies for password storage.

End of Document