

SPYCOS® Module Security Policy

Revision: 1.3

This document may be freely reproduced and distributed whole and intact, including this copyright notice.

(D

(II) ()

ΨÇ

Copyright © 2010 SPYRUS, Inc. All rights reserved. SPYRUS Document number: 550-051001-04

This document is provided only for informational purposes and is accurate as of the date of publication. This document may be copied subject to the following conditions:

- All text must be copied without modification and all pages must be included.
- All copies must contain the SPYRUS copyright notices and any other notices provided herein.

Trademarks

SPYRUS, the SPYRUS logos, Hydra Privacy Card, Hydra PC and Hydra PC Locksmith are either registered trademarks or trademarks of SPYRUS, Inc. in the United States and/or other countries.

All other trademarks are the property of their respective owners.

i

Contents

1	INTRODUCTION	1
	 SPYCOS® MODULE Overview	1 1 2 3 4
2	Ports and Interfaces	5
3	Roles and Services	6
	3.1 Services	6
4	IDENTIFICATION AND AUTHENTICATION	9
	 4.1 Initialization Overview	9 10 11 11 11 11 12
5	Key Management	12
	 5.1 CSP Management. 5.2 Public Key Management Parameters 5.3 CSP Access Matrix 5.4 Destruction of Keys and CSPs 	12 13 14 16
6	SETUP AND INITIALIZATION	16
7	PHYSICAL SECURITY	16
8	Self-Tests	17
9	CRYPTOGRAPHIC OFFICER AND USER GUIDANCE	17
	9.1 Setup and Initialization9.2 Identification and Authentication Policy	. 17 . 18
1(MITIGATION OF OTHER ATTACKS	18

1 Introduction

This Security Policy specifies the security rules under which the SPYCOS® MODULE operates. The Acronym SPYCOS stands for "SPYRUS Cryptographic Operating System". Included in these rules are those derived from the security requirements of FIPS 140-2 and additionally, those imposed by SPYRUS, Inc. These rules, in total, define the interrelationship between the modules:

- 1. Operators,
- 2. Services, and
- 3. Critical Security Parameters (CSPs).

1.1 SPYCOS[®] MODULE Overview

The SPYCOS® MODULE is the latest addition to the SPYRUS family of cryptographic module ICs that enable both smart card and USB cryptographic tokens.

The SPYCOS® MODULE IC enables security critical capabilities such as user authentication, message privacy and integrity, authentication, and secure storage in tamper-evident protective coating. The SPYCOS® MODULE communicates with a host computer via the smart card or USB interface.

1.2 SPYCOS[®] MODULE Implementation

The SPYCOS® MODULE is implemented as a single-chip module as defined by FIPS 140-2.

The SPYCOS® MODULE is available with an ISO 7816 smart card module with standard interface *OR* a mounted package with product name: Rosetta Micro. It is also supplied as individual modules on a reel for embedding / surface mounting etc. All Interfaces have been tested and are compliant with FIPS 140-2.

Product Identification (including unique part number) for the SPYCOS® MODULE is shown in the table below:

Form Factor	Part Number	FW Version
Rosetta Smart Card Module	740100002F	2.4
Rosetta Micro	742100002F	2.4

Photographs of the above form factors are shown in the figures below:

Figure 1 SPYCOS® MODULE Smart Card Module

Figure 2 Rosetta® Micro® Form Factor

1.3 SPYCOS® MODULE Cryptographic Boundary

The Cryptographic Boundary is defined to be the physical perimeter of the SPYCOS® MODULE IC and the potting material it is embedded in.

No hardware, firmware, or software components that comprise the SPYCOS® MODULE are excluded from the requirements of FIPS 140-2.

1.4 Approved Mode of Operation

The SPYCOS® MODULE approved mode of operation is comprised of the SPYCOS® MODULE command set. All commands that use FIPS 140-2 approved security functions (e.g. algorithms) are defined to be in the "approved mode of operation."

Approved mode of operation commands which are successfully completed will return a standard success return code. The command Get FIPS returns a Boolean value "1" confirming the system is in the approved mode (see Table 3-1). Services available under the approved mode of operations are detailed in Table 3-1 of this Security Policy.

The module only operates in an approved mode of operation. The Error return codes are dependent upon the cause of the failure.

The SPYCOS® MODULE supports the following FIPS 140-2 approved or allowed algorithms:

Encryption & Decryption	Certificate #
Triple DES	699
AES	842
Skipjack	18
Key Wrap & Unwrap	
RSA (key wrapping / key establishment methodology	404
provides 80 and 112 bits of encryption strength)	
Digital Signatures	
ECDSA (sign only), RSA (sign and verify)	95, 404
Message Authentication Code	
HMAC	463
Hash	
SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	834
RNG	
FIPS 186-2 (Appendix 3.1 Change Notice) RNG	481
Key Agreement / Key Establishment	
ECDH, ECMQV (key agreement; key establishment	
methodology provides between 128 and 256 bits of	
encryption strength)	

 Table 1-1 SPYCOS 2.4 Approved or Allowed Algorithms

The following services are available as "non-approved" algorithms:

Table 1-2 SPYCOS 2.4 Non-approved Algorithms

RNG
HW NDRNG
RNG
Firmware Random Number Generator (FWRNG)

1.5 FIPS 140-2 Security Levels

The SPYCOS® MODULE cryptographic module complies with the requirements for FIPS 140-2 validation to the levels defined in Table 1-3. The FIPS 140-2 overall rating of the SPYCOS® MODULE is Level 3.

Table 1-3FIPS 140-2 Certification Levels

FIPS 140-2 Category	Level	
1. Cryptographic Module Specification	3	
2. Cryptographic Module Ports and Interfaces	3	
3. Roles, Services, and Authentication	3	
4. Finite State Model	3	
5. Physical Security	3	
6. Operational Environment	N/A	
7. Cryptographic Key Management	3	
8. EMI/EMC	3	
9. Self-tests	3	
10. Design Assurance	3	
11. Mitigation of Other Attacks N/A		
14. Cryptographic Module Security Policy 3		
Overall Security Level 3		

Figure 3 SPYCOS® Module PIN Configuration

2 Ports and Interfaces

The pin configuration of the SPYCOS® MODULE cryptographic module is shown in Figure 3. The pins form a set of 8 contact points that comprise the only electronic interface with external devices. They are the sole externally visible portion of the microprocessor assembly. Only 5 of the 8 pins are active: C4, C6 and C8 are not connected (N.C.). The remaining pins perform the following functions:

Pin	Function	FIPS 140-2 Logical Interface
C1	Operating voltage	Power Interface
C2	Reset input	Control Input
C3	Processor clock input	Control Input
C5	Ground	N/A
C7	Bi-directional data port	Data Input / Data Output; Status

As is standard, the physical interface that connects the integrated circuit chip to the card acceptor device (CAD) is limited to a 9600 bits per second rate of data transfer. This communication line is a full duplex serial transmission line and conforms to ISO standard 7816/3. The central processing unit controls all data exchanges between the SPYCOS® MODULE cryptographic module and the CAD. Card commands and data are sent to the microprocessor and responses are issued by the microprocessor upon receipt of the commands and/or data. Responses take the form of standard status words.

Information sent from the SPYCOS® MODULE cryptographic module to the CAD is issued in a half duplex transmission mode. Transmission of data is therefore carried on in one direction only at any given time. Data flooding attacks are prevented by the protocol and restrictive data transmission rate of the card.

3 Roles and Services

The SPYCOS® MODULE supports two roles, Crypto-officer (CO) and User, and enforces the separation of these roles by restricting the services available to each one.

<u>Crypto-officer Role</u>: The Crypto-officer is responsible for initializing the SPYCOS® MODULE. Before issuing a SPYCOS® MODULE to an end user, the Crypto-officer initializes the SPYCOS® MODULE with private keying material and certificate information. The Crypto-officer cannot use private keys loaded on the module. The SPYCOS® MODULE validates the Crypto-officer identity before accepting any initialization commands. The Crypto-officer is also referred to as the Site Security Officer (SSO).

<u>User Role</u>: The User role is available after the SPYCOS® MODULE has been loaded with a User personality. The user can load, generate and use private keys.

The SPYCOS® MODULE validates the User identity before access is granted.

3.1 Services

The following table (Table 3-1) describes the services provided by the SPYCOS® MODULE. The User/SSO column denotes the roles that may execute the service.

Table 3-1
SPYCOS® MODULE Services

Service	Description	User / SSO	
ASYMMETRIC	Signs data using RSA or ECDSA signing key	User	
SIGNATURE	GNATURE		
BLOCK PIN	This command is used to block a PIN register. This	User,	
	command can only be executed after the principal	SSO	
	assigned as the blocking/unblocking master has		
	been authenticated (see the PIN file format for		
	additional details).		
CHANGE PIN	Enables the SSO to change either the User PIN or	User or	
	SSO PIN. The SSO must provide the original and	SSO	
	new PIN phrases. When the user PIN is successfully		
	changed or the command fails, the SSO is		
	automatically logged out.		
CHECK PIN	Inputs a PIN Phrase to authenticate the SSO or the	User,	
	User.	SSO	
CREATE FILE	Create a Dedicated File (DF) or Elementary File (EF)	User or	
	providing the parent directory access conditions for	SSO	
	the create command have been fulfilled.		
DELETE FILE	Delete a file, directory. In the non-recursive mode a	User or	
	DF containing files or directories will not be deleted.	SSO	
	In the recursive mode a DF and all of its contents are		
	deleted (provided the parent directories access		
	conditions for the "Delete" command have been		
	fulfilied). The recursive form of this command is used		
	lo achieve zeroization.	Hoor	
LUAD-DELETE KET	system (but not externally)	SSO	
DIRECTORY	Retrieves a directory listing from the current directory	User or	
	and sub-directories if the recursive mode is used	SSO	
	(providing appropriate access conditions have been		
	fulfilled)		
DISABLE FILE	Disable all operations on this file. The file can still be	User,	
	selected and the status information can still be	SSO	
	retrieved, however its contents cannot be accessed.		
	This command is valid on all ISO/IEC 7816-4 files:		
	i.e., Master File (MF), Dedicated File (DF), or		
	Elementary File (EF). If the MF is invalidated, the		
	only valid commands are: Select, Status, Get		
	Response and Rehabilitate.		
ECDSA SIGN	Computes a digital signature using the ECDSA	User	
	algorithm using the hash value passed to the card.		
	The private key of the currently selected personality		
	is used for this computation.		
ENABLE FILE	Enable a previously disabled file. If executed on a file	User,	
	that is not disabled, no change is made to the file	SSO	

Service	User / SSO	
	state and the command returns a success response code.	
ERASE FILE	Erase a file.	User, SSO
ESTABLISH DH SHARED SECRET	Generates a Diffie-Hellman shared secret Z and returns it to the caller.	User
EXTEND FILE	Extend the length of a file or directory. Valid only on	User or
	a DF, or EF (not valid on MF). Space is allocated from the current parent DF.	SSO
EXTERNAL	TDES authentication for SSO, to support a	SSO
AUTHENTICATE	challenge-response protocol on external platforms.	
GENERATE ASYMMETRIC KEY	Generic RSA or ECC key generator. The command requires the User to have created the private keying file (with appropriate access controls) prior to issuing this command.	User, SSO
GENERATE RANDOM	Generate a random number and return the value in the Data Out-Block. This will also handle the generation of Initialization Vectors (IVs) and Message Encryption Keys (MEKs).	User, SSO
GENERATE OATH ONE-TIME PASSWORD	Generates a one-time password for external use.	User, SSO
GET CHALLENGE	Get a nonce for the EXTERNAL AUTHENTICATE command.	User, SSO
GET FILE STATUS	Allows the SSO or user to obtain the current status of the File. Gets the information for a given file or directory (file id, size, type access permissions and related information).	User, SSO
GET FIPS	Responds with status response "1" indicating that the module is in the FIPS-approved mode.	User, SSO
GET RESPONSE	Retrieve the module response. Provides a generic method for transmitting APDU(s), or part of APDU(s) from the card to the application when the available protocols cannot be used.	User, SSO
GET RSA PUBLIC KEY	This command returns public information associated with the currently selected RSA key pair. The information returned is the key type, size and public modulus. Also retrieves the public key.	User, SSO
HASH DATA	Generate the SHA-1, SHA-2 Hash of a message or data object	User
HMAC DATA	Generates a HMAC message authentication code.	User
LOAD CRYPTOGRAPHIC DATA	Supports RSA and EDSA signature verification as well as the RSA Wrap Key command.	User, SSO
READ BINARY	Performs a binary read from a file, given the offset and length.	User, SSO
RSA SIGN	Signs a message or data object using either RSA signature	User

Service	Description	User / SSO
RSA VERIFY SIGNATURE	Verifies the RSA signature on a message.	User
RSA WRAP KEY	User, SSO	
SECURE UPDATE BINARY	Update the data in the currently selected EF with the data provided. The data is secured using message encryption, storage encryption or a combination of both.	User, SSO
SELECT FILE	Sets a current file within a logical channel. This could, for example, allow for the application to make further implicit EF file selections, based on the selected DF.	User or SSO
SELF TEST	Performs all power-on self-tests and responds with success or, on failure, transition to Error State. Selection of individual self-tests or all self-tests is a user option using bit flags in the parameter field.	User or SSO
SET KEY POINTER	Sets one of the 3 key pointers to the key registers. Facilitates setting an MEK to be the first, second or third key for use with the TDES engine.	User, SSO
SYMMETRIC DECRYPT	Supports symmetric cryptographic decryption modes.	User
SYMMETRIC ENCRYPT	Supports symmetric encryption modes.	User
UNBLOCK PIN	Allows a PIN that has been blocked using the BLOCK PIN command or after too many unsuccessful CHECK PIN attempts to be unblocked. This is so providing the master PIN data associated with the blocked PIN is correct (mode=0) or has been correctly provided in a previous CHECK PIN command (during the same session).	SSO
UPDATE BINARY	The UPDATE BINARY command updates the data in the currently selected EF with the data provided.	User or SSO
ZEROIZE	To zeroize the module, a recursive DELETE FILE is	User, SSO

4 Identification and Authentication

4.1 Initialization Overview

The SPYCOS® MODULE IC hardware security modules (HSMs) are initialized at the factory with a Default SSO PIN Phrase. The SSO (Site Security Officer) must

change the default value during logon to make the module ready for initialization. During initialization the module allows the execution of only the commands required to complete the initialization process.

Before a user can access or operate the module, the SSO must initialize it with the user PIN. The SSO is authorized to log on to the module any time after initialization to change parameters. The module allows 10 consecutive failed SSO logon attempts before it zeroizes all key material and initialization values. In the *zeroized* state, the SSO must use the Zeroize PIN Phrase to log on to the module and must reinitialize all module parameters.

A user must log on to a module to access any on-board cryptographic functions. To log on the user must provide the correct User PIN. The module allows 10 consecutive failed logon attempts before it blocks the stored User PIN. User information stored in the module in non-volatile memory remains resident.

4.2 Authentication

The SPYCOS® MODULE implements identity-based authentication which is accomplished by PIN entry by the operator. On invocation by the user, the SPYCOS® MODULE waits for authentication of the user or SSO role by entry of a PIN phrase. There is only one user and one SSO PIN allowed per module. Multiple user and SSO accounts are not permitted. Once a valid PIN phrase has been accepted the SPYCOS® MODULE cryptographic services may be accessed. The CheckPIN command includes the user's PIN as a parameter. When this command is received by the Module, the PIN value is used to generate a Skipjack key that is used to decrypt a validation phrase. If successful, the user gains access to the module.

The SPYCOS® MODULE stores the number of logon attempts in non-volatile memory. The count is reset after every successful entry of a User PIN Phrase by a user and after every successful entry of the SSO PIN Phrase by the SSO. If the user fails to logon to the SPYCOS® MODULE in 10 consecutive attempts, the SPYCOS® MODULE will zeroize the User PIN and then transitions to a state that is initialized only for the SSO to perform restorative actions. To restore operation to the SPYCOS® MODULE, the SSO will have to reload the initialization parameters and User PIN phrase. If the SSO Enabled User fails to logon to the SPYCOS® MODULE in 10 consecutive attempts, the SPYCOS® MODULE will block all of the certificates, Private Components, Key Registers and disallow User access. When the SPYCOS® MODULE is inserted after a zeroize, it will power up and transition to the Zeroize Default PIN phrase has been accepted, the SPYCOS® MODULE transitions to the Uninitialized State and must be reinitialized, as described in section 6.

4.3 Strength of Authentication

The strength of the authentication mechanism conforms to the following specifications.

Authentication Mechanism	Strength of Mechanism
Single PIN-entry attempt / False Acceptance Rate	The probability that a random 20-byte PIN- entry (using only 93 keyboard characters ¹)
	attempt will succeed or a false acceptance will occur is 4.269 x 10 ⁻⁴⁰ . The
	requirement for a single-attempt / false
	acceptance rate of no more than 1 in
	1,000,000 (i.e. less than a probability of 10 ⁻
	⁶) is therefore met.
Multiple PIN-entry attempt in one minute	There is also a maximum bound of 10 successive failed authentication attempts before zeroization occurs. The probability of a successful attack of multiple attempts in a one minute period is no more than 4.269×10^{-39} due to the maximum of 10 attempts. This is less than one in 100,000
	(i.e., 1×10^{-5}), as required.

 Table 4-1
 Strength of Authentication

4.3.1 Obscuration of Feedback

Feedback of authentication data to an operator is obscured during authentication (e.g., no visible display of characters result when entering a password). The PIN value is input to the CheckPIN command as a parameter by the calling application. No return code or pointer to a return value that contains the PIN is provided.

4.3.2 Non-weakening Effect of Feedback

Feedback provided to an operator during an attempted authentication shall not weaken the strength of the authentication mechanism. The only feedback provided by the CheckPIN command is a return code denoting success or failure of the operation. This information in no way affects the probability of success or failure in either single or multiple attacks.

¹ The character set available for PINs is at least all alphanumeric characters (upper and lower cases) and 31 special keyboard characters comprising the set {~ ! @ # \$ % ^ & * () _ + - = { } [] | $\ :; " < , > .? /$ }.

4.3.3 Generation of Random Numbers

The Generate Random Number command can be invoked only after authentication of the user. The FIPS 186-2 (Change Notice version) algorithm is used for all authenticated RNG calls.

5 Key Management

5.1 CSP Management

CSP	Туре	Generate	Output	Storage	Use
Designation		/ Input			
ECDSA	X9.62	Generate	None	EEPROM	The Private Key of the
Private Key		Asymmetric		storage	User employed in Elliptic
		Key			Curve digital signing
		command			operations.
EC-keypair	SP 800-56A	Generated	Establish	Transient in	Used in ECDH / ECMQV
		ECDH /	DH shared	RAM	key agreement
		ECMQV	secret		
		variables	command;		
		using FIPS	Authentica		
		186-2 RNG	tion PIN		
			transmissi		
			on		
Secure	SP 800-56A	Generated	None	Transient in	ECDH / TDES key used
Channel		by ECDH		RAM	to encrypt and decrypt
Session Key					PIN data transmitted to
					the module.
HMAC Key	FIPS 198	Generated	None	Key Register	Used to generate HMAC
	Key	by the FIPS			message authentication
		186-2 RNG			code
Message	AES, TDES	Generated	None	Key Register	Generated by the
Encryption		by the FIPS			SPYCOS® MODULE
Key		186-2 RNG			RNG for data encryption
(MEK)					
RNG Key	FIPS 186-2	Generated	None	Transient in	Used to seed the FIPS
	XKEY	by the		RAM	186-2 RNG.
		Hardware			
		NDRNG			
RNG Seed	FIPS 186-2	Generated	None	Transient in	Used to seed the FIPS
	XSEED	by the		RAM	186-2 RNG.

Table 5-1SPYCOS® MODULE CSPs

CSP	Туре	Generate	Output	Storage	Use
Designation		/ Input			
		Hardware NDRNG, GenRandom			
RSA Private Key ²	X9.31	Generate Asymmetric Key command	None	EEPROM storage	The Private Key of the User employed in RSA digital signing operations or wrapping keys.
SSO PIN Phrase	20-byte PIN	CheckPIN, ChangePIN parameter	None	Not Stored	A secret 20 byte value used for SSO authentication.
Storage Key	SKIPJACK	Generated by the FIPS 186-2 RNG	None	In plaintext in EEPROM	Used to encrypt all asymmetric private keys stored in internal memory
User PIN Phrase	20-byte PIN	CheckPIN, ChangePIN parameter	None	Not Stored	A secret 20 byte value used for user authentication.

5.2 Public Key Management Parameters

Key Management Parameter	Туре	Generate / Input	Output	Storage	Use
ECDSA Public Key	X9.62	GENERATE ASYMMETRIC KEY command	GENERATE ASYMMETRIC KEY command	EEPROM storage	The Public Key of the User employed in Elliptic Curve digital signing operations.
RSA Public Key	X9.31	GENERATE ASYMMETRIC KEY command	GET RSA PUBLIC KEY command; GENERATE ASYMMETRIC KEY command	EEPROM storage	The Public Key of the User employed in RSA digital signing operations.

Table 5-2 SPYCOS® MODULE Public Key Management Parameters

² RSA key pair use varies with the user application. Some keys are used for signatures and some for encryption / key wrapping.

5.3 CSP Access Matrix

The following table (Table 5-3) shows the services (see section 3.1) of the SPYCOS® MODULE, the roles (see section 3) capable of performing the service, the CSPs (see section 5.1) that are accessed by the service and the mode of access (see next paragraph) required for each CSP. The following convention is used: If only one of the roles applies to the service, that role appears alone. If both roles may execute the service, then "User, SSO" is indicated. If either one (but not the other) then "User or SSO" is indicated. In the last option it is a matter of organizational policy which of the rules may execute the service.

Access modes are R (read), W (write) and E (execute). Destruction is represented as a W.

Service	User / SSO	Access Type	CSP Acess	
ASYMMETRIC	User	R,E	RSA/ECDSA Private Key	
SIGNATURE				
BLOCK PIN	User or SSO	E	User PIN, SSO PIN	
CHANGE PIN	User or SSO	W,E	User PIN, SSO PIN	
CHECK PIN	User, SSO	R,E	User PIN, SSO PIN	
CREATE FILE	User or SSO	N/A	N/A	
DELETE FILE	User or SSO	N/A	N/A	
LOAD-DELETE KEY	User, SSO	W	AES/TDES Secret Key	
DIRECTORY	User or SSO	N/A	N/A	
DISABLE FILE	User, SSO	N/A	N/A	
ECDSA SIGN	SSO	W	ECDSA Private Key	
ENABLE FILE	User, SSO	N/A	N/A	
ERASE FILE	User, SSO	N/A	N/A	
ESTABLISH DH	SSO	W,E	EC keypair,	
SHARED SECRET			Secure Channel Session Key	
EXTEND FILE	User or SSO	N/A	N/A	
EXTERNAL	SSO	R	TDES Secret Key	
AUTHENTICATE				
GENERATE	User, SSO	W	RSA/ECDSA Private Key	
ASYMMETRIC KEY				
GENERATE RANDOM	User, SSO	R,W	XSEED, XKEY	
GENERATE OATH	User	W	N/A	
ONE-TIME				
PASSWORD				
GET CHALLENGE	SSO	N/A	N/A	
GET FILE STATUS	User, SSO	N/A	N/A	
GET FIPS	User, SSO	N/A	N/A	
GET RESPONSE	User, SSO	N/A	N/A	
GET RSA PUBLIC	User, SSO	N/A	N/A	

Table 5-3SPYCOS® MODULE Access Matrix

SPYRUS, Inc

Service	User / SSO	Access Type	CSP Acess
KEY			
HASH DATA	User	N/A	N/A
HMAC DATA	User	R,E	HMAC Key
LOAD	User, SSO	R	RSA Private Key
CRYPTOGRAPHIC			
DATA			
READ BINARY	User or SSO	N/A	N/A
RSA SIGN	SSO	W	RSA Private Key
RSA VERIFY	SSO	N/A	N/A
SIGNATURE			
RSA WRAP KEY	SSO	W	RSA Private Key
SECURE UPDATE	User	R,E	AES Secret Key
SECURE UPDATE	User or SSO	R.E	RSA Private Kev
BINARY		,	
SECURE UPDATE	User	R,E	AES Secret Key,
ENCRYPTED		R,E	RSA Private Key
SELECT FILE	User or SSO	N/A	N/A
SELF TEST	User or SSO	E	RSA Private Key,
			ECDSA Private Key
			HMAC Key
			RNG Key
			RNG Seed
			RSA Private Key
SET KEY POINTER	User	N/A	N/A
SYMMETRIC	User	R,E	AES/TDES Secret Key
DECRYPT			
SYMMETRIC	User	R,E	AES/TDES Secret Key
ENCRYPT			
UNBLOCK PIN	SSO	W	User PIN, SSO PIN
UPDATE BINARY	User or SSO	N/A	N/A
ZEROIZE	User, SSO	W	AES Secret Key,
			TDES Secret Key,
			RSA Private Key,
			ECDSA Private Key
			Secure Channel Session Key
			HMAC Key
			Message Encryption Key
			(MEK)
			RNG Key
			RNG Seed
			RSA Private Key
			Storage Key

5.4 Destruction of Keys and CSPs

The module has the ability to destroy all keys and CSPs by a recursive DELETE FILE command. All keys and CSPs are stored in files. The contents of the file(s) being recursively deleted are erased and over written. Should a power-down occur during the execution of the recursive DELETE FILE, the action of zeroization will resume on a subsequent power-on event, ensuring that access to zeroized information is prevented.

6 Setup and Initialization

The uninitialized module has only a root directory with minimal version and manufacturing information in specific files. There is no information pertaining to the user or SSO or their authentication data, such as PINs, stored on the uninitialized module as shipped to the customer.

Initialization of the module is accomplished by setting up a security domain by way of the following actions:

- The SSO creates a new application directory on the module;
- The SSO creates a PIN file that is associated with the SSO and User;
- The SSO initializes the PIN files by writing an encrypted authentication key to the file. No PIN information is ever written to the PIN file.
- The SSO may optionally set a default PIN or set the user PIN:
 - If the user PIN is set by the SSO, the user will not be able to change their PIN.
- The SSO uses Get FIPS to confirm FIPS mode

The module is now in FIPS mode and operators may logon with the CheckPIN command. See Section 4.2 for a description of the CheckPIN process. If organizational policy permits, the User may execute the ChangePIN command to change his/her PIN. Otherwise the SSO may change the PIN of the user when required.

7 Physical Security

The following module physical packages are available:

- Rosetta Micro
- Rosetta Smart Card Module

The module is packaged to meet FIPS 140-2 Level 3 Security for 2 package formats. The chip is packaged with physical security mechanisms that destroy the chip if physical attacks are launched against it. This is achieved using a hard, opaque, tamper-evident coating on the chip.

8 Self-Tests

The module performs both power-on and conditional self-tests. The power-on self-tests run automatically when power is restored to the module, without requiring any actions or inputs from the user. The module performs the following power-on self-tests:

- Firmware Integrity Test with CRC-16
- Cryptographic algorithm known answer tests (KAT) for:
 - Triple-DES (encrypt-decrypt)
 - AES (encrypt-decrypt)
 - Skipjack (encrypt-decrypt)
 - o ECDSA (sign)
 - RSA (sign verify)
 - o HMAC (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512)
 - FIPS 186-2 deterministic random number generator.

The module performs the following conditional tests:

- Pairwise consistency test for ECDSA
- Pairwise consistency test for RSA
- Continuous test for non-approved and approved random number generators.

Note that the use of the SELF TEST service (see Table 3-1) allows the user or SSO to perform any or all of the above tests on demand.

9 Cryptographic Officer and User Guidance

9.1 Setup and Initialization

See Section 6.

9.2 Identification and Authentication Policy

The table below (Table 9-1) describes the type of authentication and the authentication data to be used by operators, by role. For a description of the roles, see section 3.

Table 9-1 Identification and Authentication Roles and Data

Role	Type of Authentication	Authentication Data – (Strength)
Administrator	Manual Login	PIN (20 Bytes)
User	Manual Login	PIN (20 Bytes)

10 Mitigation of Other Attacks

The module is not claimed to mitigate against any specific attacks.