
Network Security Services (NSS)

 Cryptographic Module (Basic ECC)

Version 3.12.4

FIPS 140-2 Non-Proprietary Security Policy

Level 1 Validation

Sun Microsystems, Inc.

Red Hat, Inc.

Mozilla Foundation, Inc.

Document Version 1.28

February 5, 2010

Table of Contents

Introduction... 3
Platform List..4
Note on Calling the API Functions..4
Security Rules..5
Authentication Policy.. 9
Specification of Roles... 9

Role-Based Authentication... 10
Strength of Authentication Mechanism.. 11
Multiple Concurrent Operators...12

Access Control Policy... 12
Security-Relevant Information ... 12

NIST-Recommended Elliptic Curves... 13
Self-Tests.. 13
Random Number Generator..14

Module Ports and Interfaces..15
Physical Cryptographic Boundary..16
Logical Cryptographic Boundary... 17
Logical Interfaces... 18
PKCS #11... 18
Inhibition of Data Output..18
Disconnecting the Output Data Path From the Key Processes...19

Specification of Services... 19
Mitigation of Other Attacks ..27
Sample Cryptographic Module Initialization Code...29
Acknowledgments... 31
References .. 31

Introduction

A security policy includes the precise specification of the security rules under which the
cryptographic module must operate, including rules derived from the security
requirements of the FIPS PUB 140-2 standard, and the additional security rules listed
below. The rules of operation of the cryptographic module that define within which
role(s) and under what circumstances (when performing which services) an operator is
allowed to maintain or disclose each security relevant data item of the cryptographic
module.

There are three major reasons for developing and following a precise cryptographic
module security policy:

• To induce the cryptographic module vendor to think carefully and precisely about
whom they want to allow access to the cryptographic module, the way different
system elements can be accessed, and which system elements to protect.

• To provide a precise specification of the cryptographic security to allow
individuals and organizations (e.g., validators) to determine whether the
cryptographic module, as implemented, does obey (satisfy) a stated security
policy.

• To describe to the cryptographic module user (organization, or individual
operator) the capabilities, protections, and access rights they will have when using
the cryptographic module.

The NSS cryptographic module is an open-source, general-purpose cryptographic library,
with an API based on the industry standard PKCS #11 version 2.20 [1]. It is available for
free under the Mozilla Public License, the GNU General Public License, and the GNU
Lesser General Public License. The NSS cryptographic module is jointly developed by
Red Hat and Sun engineers and is used in Mozilla Firefox, Thunderbird, and many server
applications from Red Hat and Sun.

The NSS cryptographic module has two modes of operation: the FIPS Approved mode
and non-FIPS Approved mode. By default, the module operates in the non-FIPS
Approved mode. To operate the module in the FIPS Approved mode, an application must
adhere to the security rules in the Security Rules section and initialize the module
properly. If an application initializes the NSS cryptographic module by calling the
standard PKCS #11 function C_GetFunctionList and calls the API functions via the
function pointers in that list, it selects the non-FIPS Approved mode. To operate the NSS
cryptographic module in the FIPS Approved mode, an application must call the API
functions via an alternative set of function pointers. Rule 7 of the Security Rules section
specifies how to do this.

This document may be freely reproduced and distributed in its entirety.

Page 3 of 32

Platform List

FIPS 140-2 conformance testing of the NSS cryptographic module was performed on the
platforms listed below. The module is configured at compile time with Basic ECC which
only supports the NIST-recommended curves P-256, P-384, and P-521.

• Security Level 1
• Dell Dimension C521 with AMD Athlon 64 CPU, Windows XP SP3,

Basic ECC
• Mac Mini with Intel Core 2 Duo, Mac OS X 10.5, Basic ECC

The NSS cryptographic module supports many other platforms. If you would like to have
the module validated on other platforms, please contact us.

Note on Calling the API Functions

The NSS cryptographic module has two parallel sets of API functions, FC_xxx and
NSC_xxx, that implement the FIPS Approved and non-FIPS Approved modes of
operation, respectively. For example, FC_Initialize initializes the module's library
for the FIPS Approved mode of operation, whereas its counterpart NSC_Initialize
initializes the library for the non-FIPS Approved mode of operation. All the API functions
for the FIPS Approved mode of operation are listed in the Specification of Services
section.

Among the module's API functions, only FC_GetFunctionList and
NSC_GetFunctionList are exported and therefore callable by their names. (The
C_GetFunctionList function mentioned in the Introduction section is also
exported and is just a synonym of NSC_GetFunctionList.) All the other API
functions must be called via the function pointers returned by FC_GetFunctionList
or NSC_GetFunctionList. FC_GetFunctionList and
NSC_GetFunctionList each return a CK_FUNCTION_LIST structure containing
function pointers named C_xxx such as C_Initialize and C_Finalize. The
C_xxx function pointers in the CK_FUNCTION_LIST structure returned by
FC_GetFunctionList point to the FC_xxx functions, whereas the C_xxx function
pointers in the CK_FUNCTION_LIST structure returned by NSC_GetFunctionList
point to the NSC_xxx functions.

For brevity, we use the following convention to describe API function calls. Again we use
FC_Initialize and NSC_Initialize as examples:

● When we say “call FC_Initialize,” we mean “call the FC_Initialize
function via the C_Initialize function pointer in the CK_FUNCTION_LIST
structure returned by FC_GetFunctionList.”

Page 4 of 32

● When we say “call NSC_Initialize,” we mean “call the NSC_Initialize
function via the C_Initialize function pointer in the CK_FUNCTION_LIST
structure returned by NSC_GetFunctionList.”

Security Rules

The following list specifies the security rules that the NSS cryptographic module and
each product using the module must adhere to:

1. The NSS cryptographic module consists of software libraries compiled for each
supported platform.

2. The cryptographic module relies on the underlying operating system to ensure the
integrity of the cryptographic module loaded into memory.

3. Applications running in the FIPS Approved mode call FC_GetFunctionList
for the list of function pointers and call the API functions via the function
pointers in that list for all cryptographic operations. (See the Note on Calling the
API functions section.) The module changes from FIPS Approved mode to non-
FIPS Approved mode when a FC_Finalize/NSC_Initialize sequence is
executed; it changes from non-FIPS Approved mode to FIPS Approved mode
when a NSC_Finalize/FC_Initialize sequence is executed.

4. NSS cryptographic module can be configured to use different private key database
formats: key3.db or key4.db. “key3.db” format is based on the Berkeley
DataBase engine and should not be used by more than one process concurrently.
“key4.db” format is based on SQL DataBase engine and can be used concurrently
by multiple processes. Both databases are considered outside the cryptographic
boundary. The interface code of the NSS cryptographic module that accesses data
stored in the database is considered part of the cryptographic boundary as the
interface code encrypts/decrypts data.

5. Secret and private keys, plaintext passwords, and other security-relevant data
items are maintained under the control of the cryptographic module. Secret and
private keys are only to be passed to the calling application in encrypted
(wrapped) form with FC_WrapKey using Triple DES or AES (symmetric key
algorithms) or RSA (asymmetric key algorithm). Note: If the secret and private
keys passed to higher-level callers are encrypted using a symmetric key
algorithm, the encryption key may be derived from a password. In such a case,
they should be considered to be in plaintext form in the FIPS Approved mode.

6. Once the FIPS Approved mode of operation has been selected, the user must only
use the FIPS 140-2 cipher suite.

7. The FIPS 140-2 cipher suites consist solely of

• Triple DES (FIPS 46-3) or AES (FIPS 197) for symmetric key encryption

Page 5 of 32

and decryption.
• Secure Hash Standard (SHA-1, SHA-256, SHA-384, and SHA-512) (FIPS

180-2) for hashing.
• HMAC (FIPS 198) for keyed hash.
• random number generator Hash DRBG (NIST SP800-90).
• Diffie-Hellman primitives, EC Diffie-Hellman primitives , or Key

Wrapping using RSA keys for key establishment.
• DSA (FIPS 186-2 with Change Notice 1), RSA (PKCS #1 v2.1), or

ECDSA (ANSI X9.62) for signature generation and verification.

Algorithm validation certificates:

Algorithm Cert# Description

Triple DES 823 TECB(e/d; KO 1,2,3); TCBC(e/d;
KO 1,2,3)

AES 1128 ECB(e/d; 128,192,256); CBC(e/d;
128,192,256)

SHS 1050 SHA-1 (BYTE-only)
SHA-256 (BYTE-only)
SHA-384 (BYTE-only)
SHA-512 (BYTE-only)

HMAC 638 HMAC-SHA1 (Key Sizes Ranges
Tested: KS<BS KS=BS
KS>BS)

HMAC-SHA256 (Key Size
Ranges Tested: KS<BS KS=BS
KS>BS)

HMAC-SHA348 (Key Size
Ranges Tested: KS<BS KS=BS
KS>BS)

HMAC-SHA512 (Key Size
Ranges Tested: KS<BS KS=BS
KS>BS)

DRBG 18 SP 800-90
[Hash_DRBG: SHA 256]

RSA 535 ALG[RSASSA-PKCS1_V1_5];
SIG(gen); SIG(ver); 1024 , 1536 ,
2048 , 3072 , 4096 , SHS: SHA-1 ,
SHA-256 , SHA-384 , SHA-512

Page 6 of 32

Algorithm Cert# Description

DSA 368 PQG(gen) MOD(1024);

PQG(ver) MOD(1024);

KEYGEN(Y) MOD(1024);

SIG(gen) MOD(1024);

SIG(ver) MOD(1024);

ECDSA

(Basic ECC)

133 PKG: CURVES(ALL-P P-256 P-
384 P-521)

PKV: CURVES(ALL-P P-256 P-
384 P-521)

SIG(gen): CURVES(ALL-P P-256
P-384 P-521)

SIG(ver): CURVES(P-256 P-384
P-521)

Caveats:

The NSS cryptographic module implements the following non-Approved
algorithms, which must not be used in the FIPS Approved mode of operation:

• RC2 , RC4, DES, SEED, or CAMELLIA for symmetric key encryption
and decryption.

• MD2 or MD5 for hashing.

8. Once the FIPS Approved mode of operation has been selected, Triple DES and
AES must be limited in their use to performing encryption and decryption using
either ECB or CBC mode.

9. Once the FIPS Approved mode of operation has been selected, SHA-1, SHA-256,
SHA-386, and SHA-512 must be the only algorithms used to perform one-way
hashes of data.

10. Once the FIPS Approved mode of operation has been selected, RSA must be
limited in its use to generating and verifying PKCS #1 signatures, and to
encrypting and decrypting key material for key exchange.

11. Once the FIPS Approved mode of operation has been selected, DSA and ECDSA
can be used in addition to RSA to generate and verify signatures.

12. The module does not share CSPs between an Approved mode of operation and a
non-Approved mode of operation.

Page 7 of 32

13. All cryptographic keys used in the FIPS Approved mode of operation must be
generated in the FIPS Approved mode or imported while running in the FIPS
Approved mode.

14. The cryptographic module performs explicit zeroization steps to clear the memory
region previously occupied by a plaintext secret key, private key, or password. A
plaintext secret or private key must be zeroized when it is passed to a
FC_DestroyObject call. All plaintext secret and private keys must be
zeroized when the NSS cryptographic module: is shut down (with a
FC_Finalize call); or when reinitialized (with a FC_InitToken call); or
when the state changes between the FIPS Approved mode and non-FIPS
Approved mode (with a NSC_Finalize/FC_Initialize or
FC_Finalize/NSC_Initialize sequence). All zeroization is to be
performed by storing the value 0 into every byte of the memory region previously
occupied by a plaintext secret key, private key, or password.

15. The NSS cryptographic module consists of the following shared libraries/DLLs
and the associated .chk files:

• Windows XP Service Pack 3
• softokn3.dll
• softokn3.chk
• freebl3.dll
• freebl3.chk
• nssdbm3.dll
• nssdbm3.chk

• Mac OS X 10.5
• libsoftokn3.dylib
• libsoftokn3.chk
• libfreebl3.dylib
• libfreebl3.chk
• libnssdbm3.dylib
• libnssdbm3.chk

The NSS cryptographic module requires the Netscape Portable Runtime (NSPR)
libraries. NSPR provides a cross-platform API for non-GUI operating system
facilities, such as threads, thread synchronization, normal file and network I/O,
interval timing and calendar time, atomic operations, and shared library linking.
NSPR also provides utility functions for strings, hash tables, and memory pools.
NSPR is outside the cryptographic boundary because none of the NSPR functions
are security-relevant. NSPR consists of the following shared libraries/DLLs:

• Windows XP Service Pack 3
• plc4.dll
• plds4.dll
• nspr4.dll

Page 8 of 32

• Mac OS X 10.5
• libplc4.dylib
• libplds4.dylib
• libnspr4.dylib

The installation instructions are:

Step 1: Install the shared libraries/DLLs and the associated .chk files in a
directory on the shared library/DLL search path, which could be a system library
directory (/usr/lib on Unix/.dylib or C:\WINDOWS\system32 on
Windows) or a directory specified in the following environment variable:

• Windows XP Service Pack 3: PATH
• Mac OS X 10.5: DYLD_LIBRARY_PATH

Step 2: Use the chmod utility to set the file mode bits of the shared
libraries/DLLs to 0755 so that all users can execute the library files, but only the
files' owner can modify (i.e., write, replace, and delete) the files. For example, on
Mac OS X,

 $ chmod 0755 libsoftokn3.dylib libfreebl*3.dylib libplc4.dylib
libplds4.dylib libnspr4.dylib

The discretionary access control protects the binaries stored on disk from being
tampered with.

Step 3: Use the chmod utility to set the file mode bits of the associated .chk
files to 0644. For example, on most Unix and Linux platforms,

 $ chmod 0644 libsoftokn3.chk libfreebl*3.chk libnssdbm3.chk

Step 4: As specified in Rule 7, to operate the NSS cryptographic module in the
FIPS Approved mode, an application must call the alternative PKCS #11 function
FC_GetFunctionList and call the API functions via the function pointers in
that list. The user must initialize the password when using the module for the first
time. Before the user password is initialized, access to the module must be
controlled. See the Sample Cryptographic Module Initialization Code section
below for sample code.

(End of Security Rules)

Authentication Policy

Specification of Roles

The NSS cryptographic module supports two authorized roles for operators.

Page 9 of 32

● The NSS User role provides access to all cryptographic and general-purpose
services (except those that perform an installation function) and all keys stored in
the private key database. An NSS User utilizes secure services and is also
responsible for the retrieval, updating, and deletion of keys from the private key
database.

● The Crypto Officer role is supported for the installation of the module. The
Crypto Officer must control the access to the module both before and after
installation. Control consists of management of physical access to the computer,
executing the NSS cryptographic module code as well as management of the
security facilities provided by the operating system. The NSS cryptographic
module does not have a maintenance role.

Role-Based Authentication

The NSS cryptographic module uses role-based authentication to control access to the
module. To perform sensitive services using the cryptographic module, an operator must
log into the module and perform an authentication procedure using information unique to
that operator (password). The password is initialized by the NSS User as part of module
initialization. Role-based authentication is used to safeguard a user's private key
information. However, discretionary access control is used to safeguard all other
information (e.g., the public key certificate database).

If a function that requires authentication is called before the operator is authenticated, it
returns the CKR_USER_NOT_LOGGED_IN error code. Call the FC_Login function to
provide the required authentication.

A known password check string, encrypted with a Triple-DES key derived from the
password, is stored in an encrypted form in the private key database (either key3.db or
key4.db) in secondary storage. Note: This database lies outside the cryptographic
boundary.

Once a password has been established for the NSS cryptographic module, the module
allows the user to use the private services if and only if the user successfully
authenticates to the module. Password establishment and authentication are required for
the operation of the module at both Levels 1 and 2 even though level 1 does not require
such authentication method. Password authentication in the Level 1 module does not
imply that any of the roles are considered to be authorized for the purposes of Level 2
FIPS 140-2 validation.

In order to authenticate to the cryptographic module, the user enters the password, and
the cryptographic module verifies that the password is correct by deriving a Triple-DES
key from the password, using an extension of the PKCS #5 PBKDF1 key derivation
function with an 16-octet salt, an iteration count of 1, and SHA-1 as the underlying hash

Page 10 of 32

function, decrypting the stored encrypted password check string with the Triple-DES key,
and comparing the decrypted string with the known password check string.

The user's password acts as the key material to encrypt/decrypt secret and private keys.
Note: Since password-based encryption such as PKCS #5 is not FIPS Approved,
password-encrypted secret and private keys should be considered to be in plaintext form
in the FIPS Approved mode. Secret and private keys are only stored in encrypted form
(using a Triple-DES key derived from the password) in the private key database
(key3.db/key4.db) in secondary storage. Note: Password-encrypted secret and private
keys in the private key database should be considered to be in plaintext form in the FIPS
Approved mode.

Strength of Authentication Mechanism

In the FIPS Approved mode, the NSS cryptographic module imposes the following
requirements on the password. These requirements are enforced by the module on
password initialization or change.

• The password must be at least seven characters long.
• The password must consist of characters from three or more character classes.

We define five character classes: digits (0-9), ASCII lowercase letters, ASCII
uppercase letters, ASCII non-alphanumeric characters (such as space and
punctuation marks), and non-ASCII characters. If an ASCII uppercase letter is the
first character of the password, the uppercase letter is not counted toward its
character class. Similarly, if a digit is the last character of the password, the digit
is not counted toward its character class.

To estimate the probability that a random guess of the password will succeed, we assume
that

• the characters of the password are independent with each other, and
• the probability of guessing an individual character of the password is less than

1/10.

Since the password is at least 7 characters long, the probability that a random guess of the
password will succeed is less than (1/10)^7 = 1/10,000,000.

After each failed authentication attempt in the FIPS Approved mode, the NSS
cryptographic module inserts a one-second delay before returning to the caller, allowing
at most 60 authentication attempts during a one-minute period. Therefore, the probability
of a successful random guess of the password during a one-minute period is less than 60
* 1/10,000,000 = 0.6 * (1/100,000).

Page 11 of 32

Multiple Concurrent Operators

The NSS cryptographic module doesn't allow concurrent operators.

• For Security Level 1, the operating system has been restricted to a single operator
mode of operation, so concurrent operators are explicitly excluded (FIPS 140-2
Section 4.6.1).

• On a multi-user operating system, this is enforced by making the NSS certificate
and private key databases readable and writable by the owner of the files only.

Note: FIPS 140-2 Implementation Guidance Section 6.1 clarifies the use of a
cryptographic module on a server.

When a cryptographic module is implemented in a server environment, the server
application is the user of the cryptographic module. The server application makes the
calls to the cryptographic module. Therefore, the server application is the single user of
the cryptographic module, even when the server application is serving multiple clients.

Access Control Policy

This section identifies the cryptographic keys and CSPs that the user has access to while
performing a service, and the type of access the user has to the CSPs.

Security-Relevant Information

The NSS cryptographic module employs the following cryptographic keys and CSPs in
the FIPS Approved mode of operation. Note that the private key database
(key3.db/key4.db) mentioned below is outside the cryptographic boundary.

• AES secret keys: The module supports 128-bit, 192-bit, and 256-bit AES keys.
The keys may be stored in memory or in the private key database
(key3.db/key4.db).

• Hash_DRBG (SHA-256): Hash DRBG entropy - 880-bit value externally-
obtained for module DRBG; stored in plaintext in volatile memory. Hash DRBG
V value - Internal Hash DRBG state value; stored in plaintext in volatile memory.
Hash DRBG C value - Internal Hash DRBG state value; stored in plaintext in
volatile memory.

• Triple-DES secret keys: 168-bit. The keys may be stored in memory or in the
private key database (key3.db/key4.db).

• HMAC secret keys: HMAC key size must be greater than or equal to half the size
of the hash function output. The keys may be stored in memory or in the private
key database (key3.db/key4.db).

• DSA public keys and private keys: The module supports DSA key sizes of 512-

Page 12 of 32

1024 bits. DSA keys of 1024 bits be used in the FIPS Approved mode of
operation. The keys may be stored in memory or in the private key database
(key3.db/key4.db).

• RSA public keys and private keys (used for digital signatures and key transport):
The module supports RSA key sizes of 1024-8192 bits. The keys may be stored in
memory or in the private key database (key3.db/key4.db).

• EC public keys and private keys (used for ECDSA digital signatures): The module
supports elliptic curve key sizes of 256-521 bits in the Basic ECC version. The
keys may be stored in memory or in the private key database (key3.db/key4.db).

• Diffie-Hellman public keys and private keys: The module supports Diffie-
Hellman public key sizes of 1024-2236 bits. The keys may be stored in memory
or in the private key database (key3.db/key4.db).

• TLS premaster secret (used in deriving the TLS master secret): 48-byte. Stored in
memory.

• TLS master secret (a secret shared between the peers in TLS connections, used in
the generation of symmetric cipher keys, IVs, and MAC secrets for TLS): 48-
byte. Stored in memory.

• authentication data (passwords): Stored in the private key database
(key3.db/key4.db).

Note: The NSS cryptographic module does not implement the TLS protocol. The NSS
cryptographic module implements the cryptographic operations, including TLS-specific
key generation and derivation operations, that can be used to implement the TLS
protocol.

NIST-Recommended Elliptic Curves

The Basic ECC version of the NSS cryptographic module only implements the NIST-
recommended elliptic curves P-256, P-384, and P-521 specified in FIPS 186-2.

Self-Tests

In the FIPS Approved mode of operation the cryptographic module does not allow critical
errors to compromise security. Whenever a critical error (e.g., a self-test failure) is
encountered, the cryptographic module enters an error state and the library needs to be
reinitialized to resume normal operation. Reinitialization is accomplished by calling
FC_Finalize followed by FC_Initialize.

Upon initialization of the cryptographic module library for the FIPS Approved mode of
operation, the following power-up self-tests are performed:

a) Triple DES-ECB encrypt/decrypt,
b) Triple DES-CBC encrypt/decrypt,

Page 13 of 32

c) AES-ECB encrypt/decrypt (128-bit, 192-bit, and 256-bit keys),
d) AES-CBC encrypt/decrypt (128-bit, 192-bit, and 256-bit keys),
e) SHA-1 hash,
f) SHA-256 hash,
g) SHA-384 hash,
h) SHA-512 hash,
i) HMAC-SHA-1/-SHA-256/-SHA-384/-SHA-512 keyed hash (296-bit key),
j) RSA encrypt/decrypt (1024-bit modulus n),
k) RSA-SHA-256/-SHA-384/-SHA-512 signature generation (2048-bit

modulus n),
l) RSA-SHA-256/-SHA-384/-SHA-512 signature verification (2048-bit

modulus n),
m) DSA key pair generation (1024-bit prime modulus p),
n) DSA signature generation (1024-bit prime modulus p),
o) DSA signature verification (1024-bit prime modulus p),
p) ECDSA signature generation (Curve P-256),
q) ECDSA signature verification (Curve P-256),
r) random number generation, and
s) software/firmware integrity test (the authentication technique is DSA with

1024-bit prime modulus p).

Shutting down and restarting the NSS cryptographic module with the FC_Finalize
and FC_Initialize functions executes the same power-up self-tests detailed above
when initializing the module library for the FIPS Approved mode. This allows a user to
execute these power-up self-tests on demand as defined in Section 4.9.1 of FIPS 140-2.

In the FIPS Approved mode of operation, the cryptographic module performs a pair-wise
consistency test upon each invocation of RSA, DSA, and ECDSA key pair generation as
defined in Section 4.9.2 of FIPS 140-2.

In the FIPS Approved mode of operation, the cryptographic module performs a
continuous random number generator test upon each invocation of the pseudorandom
number generator as defined in Section 4.9.2 of FIPS 140-2.

Random Number Generator

The cryptographic module perform pseudorandom number generation using NIST SP
800-90 Hash Deterministic Random Bit Generators.

The cryptographic module initializes its pseudorandom number generator by obtaining at
least 110 bytes of random data from the operating system. The data obtained contains at
least 440 bits of entropy. Extra entropy input is added by invoking a noise generator.
Both initialization and noise generation are specific to the platform on which it was
implemented (e.g., Macintosh, UNIX, or Windows). The pseudorandom number
generator is seeded with noise derived from the execution environment such that the

Page 14 of 32

noise is not predictable. The source of noise is considered to be outside the logical
boundary of the cryptographic module.

A product using the cryptographic module should periodically reseed the module's
pseudorandom number generator with unpredictable noise by calling
FC_SeedRandom. After 246 calls to the random number generator the cryptographic
module obtains another 110 bytes of random data from the operating system to reseed
the random number generator.

Module Ports and Interfaces

The NSS cryptographic module is a software cryptographic implementation. No
hardware or firmware components are included. All input to the module is via function
arguments; all output is returned to the caller either as return codes or as updated memory
objects pointed to by some of the arguments. All keys, encrypted data, and control
information are exchanged through calls to library functions (logical interfaces). The
physical ports, physical covers, doors, or openings; manual controls; and physical status
indicators of the NSS cryptographic module are those of the general purpose computer it
runs on.

Page 15 of 32

Physical Cryptographic Boundary

Page 16 of 32

Logical Cryptographic Boundary

Page 17 of 32

Logical Interfaces

The following four logical interfaces have been designed within the NSS cryptographic
module.

1. Data input interface: function input arguments that specify plaintext data;
ciphertext or signed data; cryptographic keys (plaintext or encrypted) and
initialization vectors; and passwords that are to be input to and processed by the
NSS cryptographic module.

2. Data output interface: function output arguments that receive plaintext data;
ciphertext data and digital signatures; and cryptographic keys (plaintext or
encrypted) and initialization vectors from the NSS cryptographic module.

3. Control input interface: function calls, or input arguments that specify commands
and control data (e.g., algorithms, algorithm modes, or module settings) used to
control the operation of the NSS cryptographic module

4. Status output interface: function return codes, error codes, or output arguments
that receive status information used to indicate the status of the NSS
cryptographic module

The NSS cryptographic module uses different function arguments for input and output to
distinguish between data input, control input, data output, and status output, to disconnect
the logical paths followed by data/control entering the module and data/status exiting the
module. The NSS cryptographic module doesn't use the same buffer for input and output.
After the NSS cryptographic module is done with an input buffer that holds security-
related information, it always zeroizes the buffer so that if the memory is later reused as
an output buffer, no sensitive information may be inadvertently leaked.

PKCS #11

The logical interfaces of the NSS cryptpgraphic module consist of the PKCS #11
(Cryptoki) API. The API itself defines the cryptographic boundary, i.e., all access to the
cryptographic module is through this API. The module has three PKCS #11 tokens: two
tokens that implement the non-FIPS Approved mode of operation, and one token that
implements the FIPS Approved mode of operation. The FIPS PKCS #11 token is
designed specifically for FIPS 140-2, and allows applications using the NSS
cryptographic module to operate in a strictly FIPS mode.

The functions in the PKCS #11 API are listed in the table in the Specification of Services
section.

Inhibition of Data Output

All data output via the data output interface is inhibited when the NSS cryptographic

Page 18 of 32

module is in the Error state or performing self-tests.

• In Error State: The Boolean state variable sftk_fatalError tracks whether the NSS
cryptographic module is in the Error state. Most PKCS #11 functions, including
all the functions that output data via the data output interface, check the
sftk_fatalError state variable and, if it is true, return the CKR_DEVICE_ERROR
error code immediately. Only the functions that shut down and restart the module,
reinitialize the module, or output status information can be invoked in the Error
state. These functions are FC_GetFunctionList, FC_Initialize, FC_Finalize,
FC_GetInfo, FC_GetSlotList, FC_GetSlotInfo, FC_GetTokenInfo, FC_InitToken,
FC_CloseSession, FC_CloseAllSessions, and FC_WaitForSlotEvent.

• During Self-Tests: The NSS cryptographic module performs power-up self-tests
in the FC_Initialize function. Since no other PKCS #11 function (except
FC_GetFunctionList) may be called before FC_Initialize returns successfully, all
data output via the data output interface is inhibited while FC_Initialize is
performing the self-tests.

Disconnecting the Output Data Path From the Key Processes

The NSS cryptographic module doesn't return the function output arguments until key
generation or key zeroization is finished. Therefore, the logical paths used by output data
exiting the module are logically disconnected from the processes/threads performing key
generation and key zeroization.

Specification of Services

Cryptographic module services consists of public services, which require no user
authentication, and private services, which require user authentication. Public services
do not require access to the secret and private keys and other critical security parameters
(CSPs) associated with the user. Note: CSPs are security-related information (e.g., secret
and private keys, and authentication data such as passwords) whose disclosure or
modification can compromise the security of a cryptographic module. Message digesting
services are public only when CSPs are not accessed. Services which access CSPs (e.g.,
FC_GenerateKey, FC_GenerateKeyPair) require authentication. Some services require
the user to assume the Crypto Officer or NSS User role. In the table below, the role is
specified for each service. If the Role column is blank, no role needs to be assumed for
that service; such a service (e.g., random number generation and hashing) does not affect
the security of the module because it does not require access to the secret and private
keys and other CSPs associated with the user. The table lists each service as an API
function and correlates role, service type, and type of access to the cryptographic keys
and CSPs. Access types R, W, and Z stand for Read, Write, and Zeroize, respectively.

Page 19 of 32

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

FIPS 140-2
specifc

FC_GetFunctionList returns the list of
function pointers for
the FIPS Approved
mode of operation

none -

Module
Initialization

FC_InitToken initializes or
reinitializes a token

password and
all keys

Z

FC_InitPIN initializes the user's
password, i.e., sets
the user's initial
password

password W

General
purpose

FC_Initialize initializes the module
library for the FIPS
Approved mode of
operation. This
function provides the
power-up self-test
service.

none -

FC_Finalize fnalizes (shuts
down) the module
library

all keys Z

FC_GetInfo obtains general
information about
the module library

none -

Page 20 of 32

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Slot and
token
management

FC_GetSlotList obtains a list of slots
in the system

none -

FC_GetSlotInfo obtains information
about a particular
slot

none -

FC_GetTokenInfo obtains information
about the token. This
function provides the
Show Status service.

none -

FC_WaitForSlotEvent This function is not
supported by the
NSS cryptographic
module.

none -

FC_GetMechanismList obtains a list of
mechanisms
(cryptographic
algorithms)
supported by a token

none -

FC_GetMechanismInfo obtains information
about a particular
mechanism

none -

NSS
User

FC_SetPIN changes the user's
password

password RW

Page 21 of 32

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Session
management

FC_OpenSession opens a connection
("session") between
an application and a
particular token

none -

FC_CloseSession closes a session keys of the
session

Z

FC_CloseAllSessions closes all sessions
with a token

all keys Z

FC_GetSessionInfo obtains information
about the session.
This function
provides the Show
Status service.

none -

FC_GetOperationState saves the state of the
cryptographic
operation in a
session. This function
is only implemented
for message digest
operations.

none -

FC_SetOperationState restores the state of
the cryptographic
operation in a
session. This function
is only implemented
for message digest
operations.

none -

FC_Login logs into a token password R

NSS
User

FC_Logout logs out from a token none -

Page 22 of 32

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Object
management

NSS
User

FC_CreateObject creates an object key W

NSS
User

FC_CopyObject creates a copy of an
object

original key

new key

R

W

NSS
User

FC_DestroyObject destroys an object key Z

NSS
User

FC_GetObjectSize obtains the size of an
object in bytes

key R

NSS
User

FC_GetAttributeValue obtains an attribute
value of an object

key R

NSS
User

FC_SetAttributeValue modifes an attribute
value of an object

key W

NSS
User

FC_FindObjectsInit initializes an object
search operation

none -

NSS
User

FC_FindObjects continues an object
search operation

keys matching
the search
criteria

R

NSS
User

FC_FindObjectsFinal fnishes an object
search operation

none -

Encryption
and
decryption

NSS
User

FC_EncryptInit initializes an
encryption operation

encryption key R

NSS
User

FC_Encrypt encrypts single-part
data

encryption key R

NSS
User

FC_EncryptUpdate continues a multiple-
part encryption
operation

encryption key R

NSS
User

FC_EncryptFinal fnishes a multiple-
part encryption
operation

encryption key R

NSS
User

FC_DecryptInit initializes a
decryption operation

decryption key R

NSS
User

FC_Decrypt decrypts single-part
encrypted data

decryption key R

NSS
User

FC_DecryptUpdate continues a multiple-
part decryption
operation

decryption key R

NSS
User

FC_DecryptFinal fnishes a multiple-
part decryption
operation

decryption key R

Page 23 of 32

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Message
digesting

FC_DigestInit initializes a message-
digesting operation

none -

FC_Digest digests single-part
data

none -

FC_DigestUpdate continues a multiple-
part digesting
operation

none -

NSS
User
(see
the
note at
the
end of
the
table)

FC_DigestKey continues a multi-
part message-
digesting operation
by digesting the
value of a secret key
as part of the data
already digested

key R

FC_DigestFinal fnishes a multiple-
part digesting
operation

none -

Page 24 of 32

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Signature and
verifcation

NSS
User

FC_SignInit initializes a signature
operation

signing/HMA
C key

R

NSS
User

FC_Sign signs single-part data signing/HMA
C key

R

NSS
User

FC_SignUpdate continues a multiple-
part signature
operation

signing/HMA
C key

R

NSS
User

FC_SignFinal fnishes a multiple-
part signature
operation

signing/HMA
C key

R

NSS
User

FC_SignRecoverInit initializes a signature
operation, where the
data can be recovered
from the signature

RSA signing
key

R

NSS
User

FC_SignRecover signs single-part
data, where the data
can be recovered
from the signature

RSA signing
key

R

NSS
User

FC_VerifyInit initializes a
verifcation operation

Verifcation/
HMAC key

R

NSS
User

FC_Verify verifes a signature
on single-part data

verifcation/
HMAC key

R

NSS
User

FC_VerifyUpdate continues a multiple-
part verifcation
operation

verifcation/
HMAC key

R

NSS
User

FC_VerifyFinal fnishes a multiple-
part verifcation
operation

verifcation/
HMAC key

R

NSS
User

FC_VerifyRecoverInit initializes a
verifcation operation
where the data is
recovered from the
signature

RSA
verifcation
key

R

NSS
User

FC_VerifyRecover verifes a signature
on single-part data,
where the data is
recovered from the
signature

RSA
verifcation
key

R

Page 25 of 32

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Dual-function
cryptographic
operations

NSS
User

FC_DigestEncryptUpdat
e

continues a multiple-
part digesting and
encryption operation

encryption key R

NSS
User

FC_DecryptDigestUpdat
e

continues a multiple-
part decryption and
digesting operation

decryption key R

NSS
User

FC_SignEncryptUpdate continues a multiple-
part signing and
encryption operation

signing/HMA
C key

encryption key

R

R

NSS
User

FC_DecryptVerifyUpdate continues a multiple-
part decryption and
verify operation

decryption key

verifcation/
HMAC key

R

R

Key
management

NSS
User

FC_GenerateKey generates a secret key
(used by TLS to
generate premaster
secrets)

key W

NSS
User

FC_GenerateKeyPair generates a
public/private key
pair. This function
performs the pair-
wise consistency
tests.

key pair W

NSS
User

FC_WrapKey wraps (encrypts) a
key

wrapping key

key to be
wrapped

R

R

NSS
User

FC_UnwrapKey unwraps (decrypts) a
key

unwrapping
key

unwrapped
key

R

W

NSS
User

FC_DeriveKey derives a key from a
base key (used by
TLS to derive keys
from the master
secret)

base key

derived key

 R

W

Page 26 of 32

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Random
number
generation

FC_SeedRandom mixes in additional
seed material to the
random number
generator

none RW

FC_GenerateRandom generates random
data. This function
performs the
continuous random
number generator
test.

none RW

Parallel
function
management

FC_GetFunctionStatus a legacy function,
which simply returns
the value 0x00000051
(function not parallel)

none -

FC_CancelFunction a legacy function,
which simply returns
the value 0x00000051
(function not parallel)

none -

Note: The message digesting functions (except FC_DigestKey) don't require the user
to assume an authorized role because they don't use any keys. FC_DigestKey
computes the message digest (hash) of the value of a secret key, therefore the user needs
to assume the NSS User role for this service.

Mitigation of Other Attacks

The NSS cryptographic module is designed to mitigate the following attacks.

Page 27 of 32

Other Attacks Mitigation Mechanism
Specific

Limitations

Timing attacks on RSA

RSA blinding

Timing attack on RSA was
first demonstrated by Paul
Kocher in 1996 [2], who
contributed the mitigation
code to our module. Most
recently Boneh and Brumley
[3] showed that RSA
blinding is an effective
defense against timing
attacks on RSA.

None

Cache-timing attacks on the modular
exponentiation operation used in
RSA and DSA

Cache invariant modular
exponentiation

This is a variant of a
modular exponentiation
implementation that Colin
Percival [4] showed to
defend against cache-timing
attacks.

This mechanism
requires intimate
knowledge of the
cache line sizes of
the processor. The
mechanism may
be ineffective
when the module
is running on a
processor whose
cache line sizes
are unknown.

Arithmetic errors in RSA signatures

Double-checking RSA
signatures

Arithmetic errors in RSA
signatures might leak the
private key. Ferguson and
Schneier [5] recommend
that every RSA signature
generation should verify the
signature just generated.

None

Page 28 of 32

Sample Cryptographic Module Initialization Code

The following sample code uses NSPR functions (declared in the header file
"prlink.h") for dynamic library loading and function symbol lookup.

#include "prlink.h"
#include "cryptoki.h"
#include <assert.h>
#include <stdio.h>
#include <string.h>

/*
 * An extension of the CK_C_INITIALIZE_ARGS structure for the
 * NSS cryptographic module. The 'LibraryParameters' field is
 * used to pass instance-specific information to the library
 * (like where to find its config files, etc).
 */
typedef struct CK_C_INITIALIZE_ARGS_NSS {
 CK_CREATEMUTEX CreateMutex;
 CK_DESTROYMUTEX DestroyMutex;
 CK_LOCKMUTEX LockMutex;
 CK_UNLOCKMUTEX UnlockMutex;
 CK_FLAGS flags;
 CK_CHAR_PTR *LibraryParameters;
 CK_VOID_PTR pReserved;
} CK_C_INITIALIZE_ARGS_NSS;

int main()
{
 char *libname;
 PRLibrary *lib;
 CK_C_GetFunctionList pFC_GetFunctionList;
 CK_FUNCTION_LIST_PTR pFunctionList;
 CK_RV rv;
 CK_C_INITIALIZE_ARGS_NSS initArgs;
 CK_SLOT_ID slotList[2], slotID;
 CK_ULONG ulSlotCount;
 CK_TOKEN_INFO tokenInfo;
 CK_SESSION_HANDLE hSession;
 CK_UTF8CHAR password[] = "1Mozilla";
 PRStatus status;

 /*
 * Get the platform-dependent library name of the NSS
 * cryptographic module.
 */
 libname = PR_GetLibraryName(NULL, "softokn3");
 assert(libname!= NULL);
 lib = PR_LoadLibrary(libname);
 assert(lib!= NULL);
 PR_FreeLibraryName(libname);

 pFC_GetFunctionList = (CK_C_GetFunctionList)

Page 29 of 32

 PR_FindFunctionSymbol(lib, "FC_GetFunctionList");
 assert(pFC_GetFunctionList!= NULL);
 rv = (*pFC_GetFunctionList)(&pFunctionList);
 assert(rv == CKR_OK);

 /* Call FC_xxx via the function pointer pFunctionList->C_xxx */

 initArgs.CreateMutex = NULL;
 initArgs.DestroyMutex = NULL;
 initArgs.LockMutex = NULL;
 initArgs.UnlockMutex = NULL;
 initArgs.flags = CKF_OS_LOCKING_OK;
 initArgs.LibraryParameters = (CK_CHAR_PTR *)
 "configdir='.' certPrefix='' keyPrefix='' "
 "secmod='secmod.db' flags= ";
 initArgs.pReserved = NULL;
 rv = pFunctionList->C_Initialize(&initArgs);
 assert(rv == CKR_OK);

 ulSlotCount = sizeof(slotList)/sizeof(slotList[0]);
 rv = pFunctionList->C_GetSlotList(CK_TRUE, slotList, &ulSlotCount);
 assert(rv == CKR_OK);
 slotID = slotList[0];

 rv = pFunctionList->C_OpenSession(slotID,
 CKF_RW_SESSION | CKF_SERIAL_SESSION, NULL, NULL, &hSession);
 assert(rv == CKR_OK);

 /* set the operator's initial password, if necessary */

 rv = pFunctionList->C_GetTokenInfo(slotID, &tokenInfo);
 assert(rv == CKR_OK);

 if (!(tokenInfo.flags & CKF_USER_PIN_INITIALIZED)) {
 /*
 * As a formality required by the PKCS #11 standard, the
 * operator must log in as the PKCS #11 Security Officer (SO),
 * with the predefined empty string password, to set the
 * operator's initial password.
 */
 rv = pFunctionList->C_Login(hSession, CKU_SO, NULL, 0);
 assert(rv == CKR_OK);

 rv = pFunctionList->C_InitPIN(hSession,
 password, strlen(password));
 assert(rv == CKR_OK);

 /* log out as the PKCS #11 SO */
 rv = pFunctionList->C_Logout(hSession);
 assert(rv == CKR_OK);
 }

 /* the module is now ready for use */

Page 30 of 32

 /* authenticate the operator using a password */
 rv = pFunctionList->C_Login(hSession, CKU_USER,
 password, strlen(password));
 assert(rv == CKR_OK);

 /* use the module's services ... */

 rv = pFunctionList->C_CloseSession(hSession);
 assert(rv == CKR_OK);

 rv = pFunctionList->C_Finalize(NULL);
 assert(rv == CKR_OK);

 status = PR_UnloadLibrary(lib);
 assert(status == PR_SUCCESS);
 return 0;
}

The mode of operation of the NSS cryptographic module is determined by the second
argument passed to the PR_FindFunctionSymbol function.

• For the non-FIPS Approved mode of operation, look up the standard PKCS #11
function C_GetFunctionList.

• For the FIPS Approved mode of operation, look up the alternative function
FC_GetFunctionList.

Acknowledgments

Wan-Teh Chang, Glen Beasley, Neil Williams, Matthew Harmsen, John Hines, Ian
McGreer, and Bishakha Banerjee wrote previous versions of this document. Julien Pierre
and Steve Parkinson's review comments improved the presentation and accuracy of the
information. The current version was written by Bob Relyea and Glen Beasley.

References

[1] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard”,
2004. (http://www.rsasecurity.com/rsalabs/node.asp?id=2133)

[2] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems," CRYPTO '96, Lecture Notes In Computer Science, Vol. 1109, pp. 104-
113, Springer-Verlag, 1996. (http://www.cryptography.com/timingattack/)

[3] D. Boneh and D. Brumley, "Remote Timing Attacks are Practical,"
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html.

[4] C. Percival, "Cache Missing for Fun and Profit,"
http://www.daemonology.net/papers/htt.pdf.

Page 31 of 32

http://www.rsasecurity.com/rsalabs/node.asp?id=2133
http://www.daemonology.net/papers/htt.pdf
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
http://www.cryptography.com/timingattack/

[5] N. Ferguson and B. Schneier, Practical Cryptography, Sec. 16.1.4 "Checking RSA
Signatures", p. 286, Wiley Publishing, Inc., 2003.

Page 32 of 32

	Introduction
	Platform List
	Note on Calling the API Functions
	Security Rules
	Authentication Policy
	Specification of Roles
	Role-Based Authentication
	Strength of Authentication Mechanism
	Multiple Concurrent Operators

	Access Control Policy
	Security-Relevant Information
	NIST-Recommended Elliptic Curves
	Self-Tests
	Random Number Generator

	Module Ports and Interfaces
	Physical Cryptographic Boundary
	Logical Cryptographic Boundary
	Logical Interfaces
	PKCS #11
	Inhibition of Data Output
	Disconnecting the Output Data Path From the Key Processes

	Specification of Services
	Mitigation of Other Attacks
	Sample Cryptographic Module Initialization Code
	Acknowledgments
	References

