

Revision Document No. 3

October 29, 2009

SPYRUS, Inc. info@spyrus.com> <http://www.spyrus.com>

SPYRUS Document No. 550-074001-03 Copyright © 2009 SPYRUS, Inc. All rights reserved.

Copyright © 2009 SPYRUS, Inc. All rights reserved. SPYRUS Document No. 550-074001-03

This document is provided only for informational purposes and is accurate as of the date of publication. This document may be copied subject to the following conditions:

- All text must be copied without modification and all pages must be included.
- All copies must contain the SPYRUS copyright notices and any other notices provided herein.

Trademarks

SPYRUS, the SPYRUS logos, Hydra Privacy Card, Hydra PC and Hydra PC Locksmith are either registered trademarks or trademarks of SPYRUS, Inc. in the United States and/or other countries.

All other trademarks are the property of their respective owners.

Contents

1	In	TRODUCTION	2			
	1.1	Hydra PC Locksmith Overview	3			
	1.2	Hydra PC Locksmith Implementation	3			
	1.3	Hydra PC Locksmith Cryptographic Boundary				
	1.4	Approved Mode of Operations	4			
2	FI	PS 140-2 SECURITY LEVELS	5			
3	SE	CURITY RULES	5			
	3.1	FIPS 140-2 Imposed Security Rules	5			
	3.2	SPRYUS Imposed Security Rules				
	3.3	Identification and Authentication Policy				
4	Hy	YDRA PC LOCKSMITH ROLES AND SERVICES				
	4.1	Roles	Q			
	4.2	Services				
5		ENTIFICATION AND AUTHENTICATION				
	5.1	Initialization Overview				
	5.2	Operator Authentication				
	5.3	Generation of Random Numbers				
	5.4	Strength of Authentication				
6	PH	IYSICAL SECURITY	14			
7	Oı	PERATIONAL ENVIRONMENT	14			
8	A	CCESS CONTROL	15			
	8.1	Critical Security Parameters (CSPs) and Public Keys	15			
	8.2	CSP Access Modes				
	8.3	Access Matrix	17			
9	SE	LF-TESTS	18			
10	0	MITIGATION OF OTHER ATTACKS	19			
1.	L .	ACRONYMS				
R	EFERI	ENCES	20			

1 Introduction

This Security Policy specifies the security rules under which the Hydra PC Locksmith operates. Included in these rules are those derived from the security requirements of FIPS 140-2 and additionally, those imposed by SPYRUS, Inc. These rules, in total, define the interrelationship between:

- 1. Operators,
- 2. Services, and
- 3. Critical Security Parameters (CSPs).

Figure 1 Hydra PC Locksmith (Topside)

Figure 2 Hydra PC Locksmith (Top and Front View)

Figure 3 Hydra PC Locksmith (Rear and Underside View)

1.1 Hydra PC Locksmith Overview

The Hydra PC Locksmith enables security critical capabilities such as operator authentication and secure storage in rugged, tamper-evident hardware. The Hydra PC Locksmith communicates with a host computer via the USB interface. Hydra PC Locksmith protects data for government, large enterprises, small organizations, and home users. Key features:

- Encryption technology uses Suite B algorithms approved by the U.S. government for protecting both Unclassified and Classified data
- Encrypted file storage on non-removable flash card
- Strong protection against intruder attacks

Access protection is as important as encryption strength. Data encrypted with the Hydra PC Locksmith cannot be decrypted until the authorized user gains access to the device.

1.2 Hydra PC Locksmith Implementation

The Hydra PC Locksmith is implemented as a multi-chip standalone module as defined by FIPS 140-2. The FIPS 140-2 module identification data for the Hydra PC Locksmith is shown in the table below:

Part Number	FW Version	HW Version
88007021F	03.00.04	01.00.02

The Hydra PC Locksmith is available with a USB interface compliant to the *Universal Serial Bus Specification*, Revision 2.0, dated 23 September 1998. All Interfaces have been tested for compliance with FIPS 140-2. The Hydra PC Locksmith also has an LED interface which supplies status output.

1.3 Hydra PC Locksmith Cryptographic Boundary

The Cryptographic Boundary is defined to be the physical perimeter of the outer metal case of the Hydra PC Locksmith. Please see Figures 1. 2, and 3.

No hardware or firmware components that comprise the Hydra PC Locksmith are excluded from the requirements of FIPS 140-2.

1.4 Approved Mode of Operations

Encryption & Decryption

The Hydra PC Locksmith operates only in a FIPS Approved mode. The indicator that shows the operator that the module is in the Approved mode is the "GetCapabilities" command, which shows the module's firmware and hardware versions as well as the product indicator.

The Hydra PC Locksmith supports the FIPS 140-2 Approved and FIPS 140-2 non-Approved, but allowed, algorithms in Table 1-1 below.

Table 1-1 Approved Algorithms supported by Hydra PC Locksmith

znoryphon a zooryphon				
AES -128/192/256 (Certs. #1015 and #1016)				
Digital Signatures				
ECDSA - key sizes: 256, 384, 521 (Cert. #122)				
Key Transport / Key Agreement				
EC-Diffie-Hellman (ECDH) - key sizes: 256, 384, 521 (SP 800-				
56A, vendor affirmed, key agreement; key establishment				
methodology provides 80 bits of encryption strength)				
Hash				
SHA-224, SHA-256, SHA-384, SHA-512 (Certs. #972 and				
#973)				
SHA-1 (Cert. #974)				
RNG				
HASH_DRBG (SP 800-90) (Cert. #10)				
RNG for Seeding				
FIPS 186-2 RNG(Cert. #582)				
Other Algorithms – Allowed, but not FIPS 140-2 Approved				
Key Transport / Key Agreement				
EC-Diffie-Hellman (ECDH) - key sizes: 256, 384, 521 (key				
agreement; key establishment methodology provides 80 bits of				
encryption strength)				

2 FIPS 140-2 Security Levels

The Hydra PC Locksmith cryptographic module complies with the requirements for FIPS 140-2 validation to the levels defined in Table 2.1. The FIPS 140-2 overall rating of the Hydra PC Locksmith is Level 2

Table 2-1 FIPS 140-2 Certification Levels

FIPS 140-2 Category	Level
Cryptographic Module Specification	3
2. Cryptographic Module Ports and Interfaces	2
3. Roles, Services, and Authentication	3
4. Finite State Model	2
5. Physical Security	2
6. Operational Environment	N/A
7. Cryptographic Key Management	2
8. EMI/EMC	3
9. Self-tests	2
10. Design Assurance	3
11. Mitigation of Other Attacks	N/A

3 Security Rules

The Hydra PC Locksmith enforces the following security rules. These rules are separated into two categories: 1) rules imposed by FIPS 140-2; and 2) rules imposed by SPYRUS.

3.1 FIPS 140-2 Imposed Security Rules

Table 3-1 FIPS 140-2 Policies and Rule Statements

Policy	Rule Statement	
Authentication Feedback	The Hydra PC Locksmith shall obscure feedback	
	of authentication data to an operator during	
	authentication (e.g., no visible display of	
	characters result when entering a password).	
Authentication Mechanism	The Hydra PC Locksmith shall enforce Identity-	
	Based authentication.	
Authentication Strength (1)	The Hydra PC Locksmith shall ensure that	
	feedback provided to an operator during an	
	attempted authentication shall not weaken the	
	strength of the authentication mechanism.	

Policy	Rule Statement	
Authentication Strength (2)	The Hydra PC Locksmith shall satisfy the	
	requirement for a single-attempt false	
	acceptance rate of no more than one in	
	1,000,000 authentications.	
Authentication Strength (3)	The Hydra PC Locksmith shall satisfy the	
	requirement for a false acceptance rate of no	
	more than one in 100,000 for multiple	
	authentication attempts during a one minute	
	interval.	
Configuration Management	The Hydra PC Locksmith shall be under a	
	configuration management system and each	
	configuration item shall be assigned a unique	
	identification number.	
CSP Protection	The Hydra PC Locksmith shall protect all CSPs	
	from unauthorized disclosure, modification, and	
Environment Committee	substitution.	
Emissions Security	The Hydra PC Locksmith shall conform to the	
	EMI/EMC requirements specified in FCC Part	
Francis Chata (4)	15, Subpart B, Class B.	
Error State (1)	The Hydra PC Locksmith shall inhibit all data	
	output via the data output interface whenever an	
Error State (2)	error state exists and during self-tests.	
Error State (2)	The Hydra PC Locksmith shall not perform any	
Guidance Documentation	cryptographic functions while in an Error State.	
Guidance Documentation	The Hydra PC Locksmith documentation shall provide Administrator and User Guidance per	
	FIPS 140-2, Section 4.10.4.	
Hardware Quality	The Hydra PC Locksmith shall contain	
Tidiaware addity	production quality ICs with standard passivation.	
Interfaces (1)	The Hydra PC Locksmith interfaces shall be	
	logically distinct from each other.	
Interfaces (2)	The Hydra PC Locksmith shall support the	
	following five (5) interfaces:	
	data input	
	data output	
	control input	
	status output	
	power input	
Key Association	The Hydra PC Locksmith shall provide that: a	
	key entered into, stored within, or output from	
	the Hydra PC Locksmith is associated with the	
	correct entity to which the key is assigned.	

Policy	Rule Statement
Logical Separation	The Hydra PC Locksmith shall logically
	disconnect the output data path from the circuitry
	and processes performing the following key
	functions:
	 key generation,
	key zeroization
Mode of Operation	The Hydra PC Locksmith services shall indicate
	that the module is in an Approved mode of
	operation with a standard success return code
	and the output of the "GetCapabilities"
	command.
Public Key Protection	The Hydra PC Locksmith shall protect public
	keys against unauthorized modification and
	substitution.
Re-authentication	The Hydra PC Locksmith shall re-authenticate
	an identity when it is powered-up after being
DNO Otroposti	powered-off.
RNG Strength	The Hydra PC Locksmith shall use a 'seed input'
	into the deterministic random bit generator of
	sufficient length that ensures at least the same
	amount of operations are required to determine
Secure Development (1)	the value of the generated key.
Secure Development (1)	The Hydra PC Locksmith source code shall be annotated.
Secure Development (2)	The Hydra PC Locksmith firmware shall be
Secure Development (2)	implemented using a high-level language except
	limited use of a low-level language to enhance
	the performance of the module.
Secure Distribution	The Hydra PC Locksmith documentation shall
	include procedures for maintaining security while
	distributing and delivering the module.
Self-tests (1)	The power up tests shall not require operator
,	intervention in order to run.
Self-tests (2)	The Hydra PC Locksmith shall perform the self-
,	tests identified in Section 7.
Self-tests (3)	The Hydra PC Locksmith shall enter an Error
	State and output an error indicator via the status
	interface whenever self-test is failed.
Services	The Hydra PC Locksmith shall provide the
	following services:
	(see Reference Table 4.2).
Firmware Integrity	The Hydra PC Locksmith shall apply a SHA-384
	hash to check the integrity of all firmware
	components

Policy	Rule Statement	
Status Output	The Hydra PC Locksmith shall provide an	
	indication via the "GetUserState" command if all	
	of the power up tests are passed successfully.	
Strength of Key	The Hydra PC Locksmith shall use a key	
Establishment	establishment methodology that ensures at least	
	the same amount of operations are required to	
	determine the value of the transported/agreed	
	upon key.	
Unauthorized Disclosure	The Hydra PC Locksmith shall protect the	
	following keys from unauthorized disclosure,	
	modification and substitution:	
	 secret keys 	
	 private keys. 	
Zeroization (1)	The Hydra PC Locksmith shall provide a	
	zeroization mechanism that can be performed	
	either procedurally by the operator or	
	automatically by the Hydra PC Locksmith	
	interface firmware on the connected host	
	platform.	
Zeroization (2)	The Hydra PC Locksmith shall provide the	
	capability to zeroize all plaintext cryptographic	
	keys and other unprotected critical security	
	parameters within the Hydra PC Locksmith	
	(HPC140-F).	

3.2 SPYRUS Imposed Security Rules

Table 3-2 SPYRUS Imposed Policies and Rule Statements

Policy	Rule Statement
Single User Session	The Hydra PC Locksmith shall not support multiple concurrent operators.
No Maintenance Interface	The Hydra PC Locksmith shall not provide a maintenance role/interface.
No Bypass Mode	The Hydra PC Locksmith shall not support a bypass mode.

3.3 Identification and Authentication Policy

The table below describes the type of authentication and the authentication data to be used by operators, by role. For a description of the roles, see section 4.2.

Table 3-3 Identification and Authentication Roles and Data

Role	Type of	Authentication Data /
	Authentication	Identification
Administrator (CO)	Identity-based	Service and ECDSA
		Signature (384-bits)
User	Identity-based	Service and PIN
		(minimum 7 to 262
		characters)

4 Hydra PC Locksmith Roles and Services

4.1 Roles

The Hydra PC Locksmith supports two roles, Administrator (Crypto-Officer or CO) and User, and enforces the separation of these roles by restricting the services available to each one. Each role is uniquely identified by the service that has been requested and is associated with the role.

Table 4-1 Roles and Responsibilities

Role	Responsibilities
Administrator	The Administrator is responsible for performing Firmware Updates and setting configuration of the Hydra PC Locksmith (HPC140-F). The Hydra PC Locksmith authenticates the Administrator identity by way of a signature verification before accepting any FirmwareUpdate or SetConfiguration commands. The loading of new firmware will invalidate the module unless the firmware has been FIPS 140-2 validated.
User	The User role is available after the Hydra PC Locksmith has been initialized. The user can generate and use secret keys for encryption services.

The Hydra PC Locksmith authenticates the User identity by password before access is granted.

4.2 Services

The following table describes the services provided by the Hydra PC Locksmith (HPC140-F).

Table 4-2 Hydra PC Locksmith Services

Service	CO	User	Unauthenticated	Description
ChangePassword		X		Changes User Password
Format		X		Formats the mounted
				CDROM
GetCapabilities			Х	Returns the current
				capabilities of the system
				including: global Information, media
				storage size and the
				product name. This
				service provides a
				response that indicates
				the approved mode of
				operation (see Section
				3.1).
GetConfig			X	Returns the card
				configuration structure
GetUserState			X	Returns the state and
				the Logon attempts
				remaining.
Initialize		X		Generates a new
				encryption key and
				changes the PIN. Secure
				channel is required. Formats the media.
LogOff		Χ		Log Off; Return to
Logon		^		unauthenticated state.
LogOn		X		Log on with the user PIN
Logon				if system is initialized.
MountCDROM		Х		Allows the CDROM drive
				to be mounted as the
				read/write drive. This
				permits the CDROM
				software to be updated
				by a user application.
ReadMedia		Х		Read user media from
				SCSI drive.

Service	СО	User	Unauthenticated	Description
ReadUserArea			Х	Get a block of data from a specified user area.
SelfTest			Х	Pass/Fail Test of HYDRA PC LOCKSMITH. Will run the Power On Self Tests again.
SetConfig	X			Writes the card configuration structure if the signature on the structure is valid
SetupBasicSecur eChannel			X	Initializes secure channel.
UpdateFirmware	X			Writes signed blocks to the firmware area of the HYDRA PC LOCKSMITH.
WriteMedia		Х		Writes user media to SCSI drive.
WriteUserArea		X		Write a block of data to a specified user area. All areas will require the token to be logged on for writes and updates
Zeroize			X	Clears the encryption keys. Requires the Initialize command to be run again.

5 Identification and Authentication

5.1 Initialization Overview

The Hydra PC Locksmith modules are initialized at the factory to be in the zeroized state. Before an operator can access or operate a HYDRA PC Locksmith, the User must first initialize the module with a User identity and PIN.

5.2 Operator Authentication

Operator Authentication is accomplished by PIN entry by the User or valid ECDSA signature by the CO. Once valid authentication information has been accepted, the Hydra PC Locksmith is ready for operation.

The Hydra PC Locksmith stores the number of User logon attempts in non-volatile memory. The count is reset after every successful entry of a User PIN. If an incorrect PIN is entered during the authentication process, the count of unsuccessful logon attempts is incremented by one.

If the User fails to log on to the Hydra PC Locksmith in 10 consecutive attempts, the Hydra PC Locksmith will block the user's access to the module, by transitioning to the blocked state. To restore operation to the Hydra PC Locksmith (HPC140-F), the operator will have to zeroize the token and reload the User PIN and optional details. When the Hydra PC Locksmith is inserted after zeroization, it will power up and transition to the Zeroized State, where it can be initialized by the User.

5.3 Generation of Random Numbers

The Random Number Generators are not invoked directly by the user. The Random Number output is generated by the HASH-DRBG algorithm specified in SP 800-90 in the case of static private keys and associated key wrapping keys, ephemeral keys and symmetric keys.

5.4 Strength of Authentication

The strength of the authentication mechanism is stated in Table 5-1 below.

Table 5-1 Strength of Authentication

Authentication Mechanism	Strength of Mechanism
User Single PIN-entry attempt / False	The probability that a random PIN-entry
Acceptance Rate	attempt will succeed or a false acceptance
	will occur is 1.66 x10 ⁻¹⁴ . The requirement
	for a single-attempt / false acceptance rate
	of no more than 1 in 1,000,000 (i.e., less
	than a probability of 10 ⁻⁶) is therefore met.
User Multiple PIN-entry attempt in one	Hydra PC Locksmith authentication
minute	mechanism has a feature that doubles the
	time of authentication with each
	successive failed attempt. There is also a maximum bound of 10 successive failed
	authentication attempts before zeroization
	occurs. The probability of a successful
	attack of multiple attempts in a one minute
	period is 1.66 x10 ⁻¹³ due to the time
	doubling mechanism. This is less than one
	in 100,000 (i.e., 1×10^{-5}), as required.
Crypto-Officer Single attempt / False	The probability that a random ECDSA
Acceptance Rate	signature verification authentication
	attempt will succeed or a false acceptance
	will occur is 1/2^192. The requirement for
	a single-attempt / false acceptance rate of
	no more than 1 in 1,000,000 (i.e., less than
Crypto Officer Multiple DIN entry officer time	a probability of 10 ⁻⁶) is therefore met.
Crypto-Officer Multiple PIN-entry attempt in one minute	The probability of a successful attack of
One minute	multiple ECDSA signature authentication attempts in a one minute period is 1/2^192.
	The computational power needed to
	process this is outside of the ability of the
	module. This is less than one in 100,000
	(i.e., 1×10^{-5}), as required.
	(non, 17, 10), ao roganoa.

6 Physical Security

The Hydra PC Locksmith utilizes production-grade components with an opaque metal enclosure and tamper evident seals. Tamper evident seals are applied during manufacturing. The operator should ensure that the tamper evident seals are intact, with no visible signs of tamper.

The cryptographic boundary for the module is defined as the physical perimeter of the module's metal case, which contains all hardware and firmware required for the performance of all services offered by the module.

Figure 4 Hydra PC Locksmith (Tamper Label Placement)

7 Operational Environment

The Hydra PC Locksmith is a limited operational environment and only executable code validated by SPYRUS, Inc. may be loaded and executed on the module; therefore, the operating system requirements of FIPS 140-2 do not apply.

8 Access Control

8.1 Critical Security Parameters (CSPs) and Public Keys

Table 8-1 Hydra PC Locksmith CSPs

Table 8-1 Hydra PC Locksmith CSPs						
CSP Designation	Algorithm(s) /	Symbolic	Description			
	Standards	Form				
Disk Ephemeral Private	SP 800-56A	$d_{e,U}$	ECDH ephemeral private key used to			
		,	generate shared secret.			
Disk Key Encryption	AES 256	DKEK	AES key used to unwrap the Disk			
Key (DKEK)			Encryption Key (DEK) .			
Drive Encryption Key	AES 512	DEK	A pair of AES 256 keys. The			
(DEK)			concatenated value is used to encrypt			
			and decrypt the User's encrypted drive.			
Hash-DRBG Seed	SP 800-90	S	FIPS 186-2-generated value used to			
			seed the Hash-DRBG RNG.			
Hash-DRBG State	SP 800-90	S _{HDRBG}	Hash_DRBG state value.			
Master Encryption Key	AES 256	MEK	AES 256 wraps / unwraps user's static			
(MEK)			private keys in storage.			
Secure Channel HYDRA	SP 800-56A	$d_{e,SCHP}$	ECDH Ephemeral Transport Private.			
Private						
Secure Channel	SP 800-56A	k _{SCSK}	256 bit AES key used to encrypt and			
Session Key			decrypt commands and responses to			
			and from the card.			
User PIN		PIN	The User's minimum 7 character PIN			
			for authentication to the module.			
User's Static Signature	X9.62	$d_{ECDSA,s,U}$	ECDSA Static Signature private key.			
Private						
FIPS 186-2 RNG seed	FIPS 186-2 –		Seed key used to seed the Hash-			
key	512 bits		DRBG.			
User's Static Transport	SP 800-56A	$d_{s,U}$	ECDH Static Transport private key.			
Private						

Table 8-2 HYDRA PC Locksmith Public Keys

Key	Algorithm(s) Standards	Description/Usage
Configuration Update Key	ANSI X9.62	The ECDSA P-384 public Key is used to verify the signature of the CO before the settings are changed.
Card Firmware Update Key	ANSI X9.62	The ECDSA P-384 public Key is used to verify the signature of the CO before loading firmware.

Key	Algorithm(s) Standards	Description/Usage
Disk Ephemeral Public	SP 800-56A	ECDH Ephemeral Transport Public P384. The key is used to generate a shared secret using ECDH with the User's Static Transport Private key.
Secure Channel Host Public	SP 800-56A	ECDH Ephemeral Transport Public P256.
Secure Channel HYDRA Public	SP 800-56A	ECDH Ephemeral Transport Public P256. The key is used to generate a shared secret between the host and the card.
User's Static Signature Public	SP 800-56A	ECDH Static Signature Public P384. The key for ECDSA.
User's Static Transport Public	SP 800-56A	ECDH Static Transport Public P384. The key for ECDH.

8.2 CSP Access Modes

Table 8-3 Hydra PC Locksmith Access Modes

Tuble of Try draft C Elochismin Freeding Wilden				
Access Type	Description			
Generate (G)	"Generate" is defined as the creation of a CSP			
Delete (D)	"Delete" is defined as the zeroization of a CSP			
Use (U)	"Use" is defined as the process in which a CSP is			
	employed. This can be in the form of loading, encryption,			
	decryption, signature verification, or key wrapping.			

8.3 Access Matrix

The following table shows the services (see section 4.2) of the Hydra PC Locksmith (HPC140-F), the roles (see section 4.1) capable of performing the service, the CSPs (see section 6.1) that are accessed by the service and the mode of access (see section 6.3) required for each CSP. The following convention is used: if the role column has an 'X', then that role may execute the command.

Table 8-4 Hydra PC Locksmith Access Matrix

Service Name	Roles			Access to Critical Security Parameters		
	Unauthenti-	Administrat	User	CSPs	Access Mode	
	cated	or (CO)				
ChangePassword			X	k _{SCSK}	U	
				$d_{s,U}$	U	
				$d_{ECDSA,s,U}$	U	
				$d_{e,U,}$	U	
				DKEK	G, U, D	
				DEK	U	
				PIN	D,G	
Format			X	$d_{e,U}$	G, U, D	
				DKEK,	G,U,D	
				DEK	G,U	
Initialize			X	k _{SCSK}	U	
				$d_{s,U}$	G	
				$d_{ECDSA,s,U}$	G	
				$d_{e,U,}$	G, U, D	
				DKEK	G , U , D	
				DEK	G	
				MEK	U	
LogOff			Χ			
LogOn			X	k _{SCSK}	U	
				$d_{s,U}$	U	
				DKEK	G,U,D	
				DEK	U	
				PIN	U	
MountCDROM			Χ	DEK	U	
ReadMedia			Χ	DEK	U	
SetConfig		Х		$d_{s,U}$	D	
				d _{ECDSA,s,U}	D	
				DEK	D	
UpdateFirmware		Х		d _{s,U}	D	
				d _{ECDSA,s,U}	D	
				DEK	D	
WriteMedia			Χ	DEK	U	

Service Name	Roles			Access to Critical Security Parameters	
	Unauthenti- cated	Administrat or (CO)	User	CSPs	Access Mode
WriteUserArea			Χ		
GetCapabilities	X	X	Χ		
GetConfig	Х	X	Χ		
GetUserState	Х	Х	Х		
ReadUserArea	Х	Х	Χ		
SelfTest	Х	Х	Х	S, S _{HDRBG} ,	G
SetupBasicSecureCha	Х	Х	Х	$d_{e,SCHP}$	G,D
nnel				k _{SCSK}	G,D
Zeroize	Х	Х	Х	d _{s,U}	D
				d _{ECDSA,s,U}	D
				DEK	D
				MEK	D

9 Self-Tests

The module performs both power-on and conditional self-tests. The module performs the following power-on self-tests:

- Cryptographic Algorithm Tests:
 - AES-128, 192, 256 KATs
 - ECDSA-256, 384, 521 KATs
 - EC-Diffie-Hellman-256, 384, 521 KATs
 - SHA-224 KAT
 - SHA-256 KAT
 - SHA-384 KAT
 - SHA-512 KAT
 - HASH-DRBG KAT
 - FIPS 186-2 RNG KAT
- Firmware Test
 - SHA-384 Hash

The module performs the following Conditional Tests:

- Firmware Load Test
 - ECDSA P-384 signed SHA-384 hash verification
- Pairwise Consistency Test
 - ECDSA key pair generation
 - EC-Diffie-Hellman key pair generation
- Continuous Random Number Generator Test
 - HASH-DRBG SP800-90
 - FIPS 186-2

10 Mitigation of Other Attacks

No claims of mitigation of other attacks listed in Section 4.11 of FIPS 140-2 by the HYDRA PC Locksmith are made or implied in this document.

11 Acronyms

AES Advanced Encryption Standard

CBC Cipher Block Chaining
CSP Critical Security Parameter
DPA Differential Power Analysis
DRBG Digital Random Bit Generator
DSA Digital Signature Algorithm
ECB Electronic Code Book

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm **ECMQV** Elliptic Curve Menezes-Qu-Vanstone

EMC Electromagnetic Compatibility
EMI Electromagnetic Interface

FEK File Encryption Key

FIPS Federal Information Processing Standard

HAC Host Authentication Code
MKEK Master Key Encryption Key

NDRNG Non-deterministic Random Number Generator

PC Personal Computer
PCB Printed Circuit Board

PIN Personal Identification Number RNG Random Number Generator

RSA Rivest, Shamir and Adleman Algorithm SD Secure Digital (flash memory card)

SDHC Secure Digital High-capacity
SHA Secure Hash Algorithm
SPA Simple Power Analysis

SSD Solid-state Drive
USB Universal Serial Bus

References

FIPS 140-2 FIPS PUB 140-2, Change Notice,

Federal Information Processing Standards Publication (Supersedes FIPS PUB 140-1, 1994 January 11)

Security Requirements For Cryptographic Modules,
Information Technology Laboratory, National Institute of
Standards and Technology (NIST), Gaithersburg, MD, Issued
May 25, 2001.

FIPS 186-2 FIPS PUB 186-2, (+ Change Notice),

Federal Information Processing Standards Publication

DIGITAL SIGNATURE STANDARD (DSS),

National Institute of Standards and Technology (NIST),

Gaithersburg, MD, Issued 2000 January 27

SP 800-56A NIST Special Publication 800-56A

Recommendation for Pairwise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised), Barker, E., Johnson, D., Smid, M., Computer

Security Division, NIST, March 2007.

SP 800-90 NIST Special Publication 800-90

Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Barker, E., Kelsey, J., Computer Security Division, Information Technology

Laboratory, NIST, June 2006.

X9.62 American National Standards Institute (ANSI)

Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm

(ECDSA), 2005.