
Security BuilderR
�

FIPS Java Module

Version 2.2

FIPS 140-2 Non-Proprietary

Security Policy

Certicom Corp.

September 15, 2008



Copyright c
�

2005-2008 Certicom Corp.
This document may be freely reproduced and distributed whole and intact including this

Copyright Notice.

“Security Builder” is a registered trademark of Certicom Corp.

Certicom Corp. has intellectual property rights relating to technology embodied in the
product that is described in this document. In particular, and without limitation, these intel-
lectual property rights may include one or more of the U.S. and non-U.S. patents listed at
http://www.certicom.com/patents and one or more additional patents or pending
patent applications in the U.S. and in other countries. Information subject to change.

2



Contents

1 Introduction 5
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Change Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Cryptographic Module Specification 10
2.1 Physical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Computer Hardware, OS, and JVM . . . . . . . . . . . . . . . . . . . 12
2.3 Software Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Cryptographic Module Ports and Interfaces 14

4 Roles, Services, and Authentication 15
4.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Operator Authentication . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Finite State Model 18

6 Physical Security 19

7 Operational Environment 20

8 Cryptographic Key Management 21
8.1 Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 Key Establishment . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.3 Key Entry and Output . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.4 Key Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.5 Zeroization of Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Self-Tests 23
9.1 Power-up Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9.1.1 Tests upon Power-up . . . . . . . . . . . . . . . . . . . . . . 23
9.1.2 On-Demand Self-Tests . . . . . . . . . . . . . . . . . . . . . 23

9.2 Conditional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.3 Failure of Self-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 Design Assurance 24
10.1 Configuration Management . . . . . . . . . . . . . . . . . . . . . . . 24
10.2 Delivery and Operation . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.4 Guidance Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3



11 Mitigation of Other Attacks 25
11.1 Timing Attack on RSA . . . . . . . . . . . . . . . . . . . . . . . . . 25
11.2 Attack on Biased Private Key of DSA . . . . . . . . . . . . . . . . . 25

A Crypto Officer And User Guide 26
A.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.1.1 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.1.2 Uninstalling . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.2.2 Deinitialization . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.2.3 Self-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.2.4 Show Status . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.3 When Module is Disabled . . . . . . . . . . . . . . . . . . . . . . . 27

4



1 Introduction

1.1 Overview

This is a non-proprietary Federal Information Processing Standard (FIPS) 140-2 Se-
curity Policy for Certicom’sSecurity Builder R

�
FIPS Java Module Version 2.2(SB

FIPS Java Module). SB FIPS Java Module is a cryptographic toolkit for Java language
users, providing services of various cryptographic algorithms such as hash algorithms,
encryption schemes, message authentication, and public key cryptography. This Secu-
rity Policy specifies the rules under which SB FIPS Java Module must operate. These
security rules are derived from the requirements of FIPS 140-2 [1], and related docu-
ments [6, 7, 8].

1.2 Purpose

This Security Policy is created for the following purposes:

1. It is required for FIPS 140-2 validation.

2. To outline SB FIPS Java Module’s conformance to FIPS 140-2Level 1 Security
Requirements.

3. To provide users with how to configure and operate the cryptographic module in
order to comply with FIPS 140-2.

1.3 References

References

[1] NIST Security Requirements For Cryptographic Modules, December 3, 2002.

[2] NIST Security Requirements For Cryptographic Modules, Annex A:Approved
Security Functions for FIPS PUB 140-2, December 18, 2007.

[3] NIST Security Requirements For Cryptographic Modules, Annex B:Approved
Protection Profiles for FIPS PUB 140-2, June 14, 2007.

[4] NIST Security Requirements For Cryptographic Modules, Annex C:Approved
Random Number Generators for FIPS PUB 140-2, October 18, 2007.

[5] NIST Security Requirements For Cryptographic Modules, Annex D:Approved
Key Establishment Techniques for FIPS PUB 140-2, January 16, 2008.

[6] NIST Derived Test Requirements for FIPS 140-2, Draft, March 24, 2004.

[7] NIST Implementation Guidance for FIPS PUB 140-2 and the Cryptographic
Module Validation Program, May 22, 2008.

[8] NIST Frequently Asked Questions for the Cryptographic Module Validation Pro-
gram, December 4, 2007.

5



[9] NIST Recommendation for Random Number Generation Using Deterministic
Random Bit Generators (Revised), March, 2008.

6



1.4 Change Notes
The following are placed here by RCS upon check-in.

$Log: SBFIPSJModule2SecurityPolicy.tex,v $
Revision 1.46 2008/09/15 14:00:42 ayamada
Revised based on the comments from CMVP.

Revision 1.45 2008/06/16 18:00:39 ayamada
1. Algorithm Certificate numbers are provided.
2. Updated references.
3. Editorial correction.

Revision 1.44 2008/05/09 19:45:52 rwilliam
Clarified runSelfTests

Revision 1.43 2008/05/09 15:29:34 ayamada
Correction on the date.

Revision 1.42 2008/05/09 15:29:05 ayamada
Fixed the description to correctly represent the behavior in Java.

Revision 1.41 2008/04/18 17:04:55 ayamada
Corrections on the supported algorithms.
Editorial corrections.

Revision 1.40 2008/04/18 13:28:40 ayamada
For SB FIPS Jave Module 2.2.
1. Updated the list of tested platforms.
2. The tested JRE version is now 1.6.
3. Added new algorithms: AES CMAC, AES GCM, DRBG.
4. Clarification on the operational environment.

Revision 1.39 2008/04/15 12:35:28 ayamada
Fixed a typo.

Revision 1.38 2008/04/11 22:09:50 ayamada
For Version 2.2.
New platform list and JRE list.
Includes new algorithms such as NIST SP 800-90 RNG.

Revision 1.37 2008/03/14 17:50:42 ayamada
The first draft for SB FIPS Java Module 2.2.

Revision 1.36 2008/01/24 15:25:36 ayamada
Updated from the 2.1 branch.

Revision 1.35.6.1 2007/08/29 19:04:22 ayamada
Updated to add Solaris 10 32-bit.

Revision 1.35 2006/12/08 14:17:26 ayamada
Date update.

Revision 1.34 2006/12/08 14:15:55 ayamada
Correction on the DSS certificate number.

Revision 1.33 2006/12/07 19:46:09 ayamada
Updated the date on the document.

Revision 1.32 2006/12/07 19:44:24 ayamada
Added FIPS Algorithm certificate numbers.

Revision 1.31 2006/11/03 17:45:58 ayamada
Added extra space on page 2.

Revision 1.30 2006/11/03 17:39:02 ayamada
Added patent statement.

7



Revision 1.29 2006/11/03 15:07:49 ayamada
Addition of some clarifications and reference update.

Revision 1.28 2006/11/02 19:58:52 ayamada
Simplified operational environment description.

Revision 1.27 2006/10/13 14:22:49 ayamada
Improved to have clearer statements.

Revision 1.26 2006/09/14 14:04:22 ayamada
Revised to add 2 platforms.
Windows OS is updated to XP.

Revision 1.25 2006/06/28 14:09:02 ayamada
A bit more edirotial improvements.

Revision 1.24 2006/06/28 14:01:32 ayamada
Some editorial fixes.

Revision 1.23 2006/06/27 20:15:40 mmezheri
updated supported hardware, software diagram and algorithms table

Revision 1.22 2006/06/26 15:20:06 mmezheri
updated regarding gse-j 2.1

Revision 1.21 2006/06/05 21:52:41 mmezheri
new algorithms updating

Revision 1.20 2005/12/14 17:02:48 zlieber
Merged sbgsej_2_0 branch: -j root-of-sbgsej_2_0-branch -j sbgsej_2_0_9

Revision 1.11.2.2 2005/09/27 18:10:34 ayamada
Further revised the notes on the security of key establishment techniques.

Revision 1.19 2005/09/27 13:42:29 ayamada
Added notes on security levels of DH, ECDH, and ECMQV.

Revision 1.18 2005/09/21 20:01:27 ayamada
Added clarification on key size for the RSA key wrapping techniques.

Revision 1.17 2005/09/14 18:47:47 ayamada
Further clarified the status of DES in Table 3.

Revision 1.16 2005/09/14 17:20:11 ayamada
1. Fix on Table 3 to clarify the legacy status of DES.
2. FIPS Approved is corrected to FIPS allowed for key establishment techniques.

Revision 1.15 2005/04/22 13:19:47 ayamada
Further clarifications.

Revision 1.14 2005/03/31 17:46:50 ayamada
Editorial corrections.

Revision 1.13 2005/03/28 15:26:50 ayamada
Correction on the date.

Revision 1.12 2005/03/28 15:21:17 ayamada
The algorithm certificate numbers are obtained.
Some minor editorial corrections.

Revision 1.11 2005/02/18 18:53:36 ayamada
A few minor corrections.

Revision 1.10 2005/02/18 16:04:20 ayamada
More clarifications and editorial corrections.

Revision 1.9 2005/02/15 17:10:11 efung

8



Typo

Revision 1.8 2005/02/11 21:16:22 efung
Superscript the (R)

Revision 1.7 2005/02/10 23:00:19 efung
supertab isn’t actually being used (package seems to be superseded by
supertabular)

Revision 1.6 2005/02/10 19:08:35 ayamada
Further corrections.

Revision 1.5 2005/02/10 18:34:20 ayamada
Editorial corrections.

Revision 1.4 2005/02/04 18:35:07 ayamada
Completed the appendix.

Revision 1.3 2005/02/01 15:56:28 ayamada
Editorial corrections.

Revision 1.2 2005/01/28 14:54:00 ayamada
Revised for differences of Java from C.

Revision 1.1 2005/01/28 13:48:21 ayamada
Initial revision: copied from GSE-C 2.0.

9



2 Cryptographic Module Specification

SB FIPS Java Module is a multiple-chip standalone cryptographic module that operates
with the following components:

� A commercially available general-purpose computer hardware.

� A commercially available Operating System (OS) that runs onthe computer
hardware.

� A commercially available Java Virtual Machine (JVM) that runs on the computer
hardware and OS.

2.1 Physical Specifications

The general-computer hardware component consists of the following devices:

1. CPU (Microprocessor)

2. Memory

(a) Working memory is located on the RAM containing the following spaces:

i. Input/output buffer

ii. Plaintext/ciphertext buffer

iii. Control buffer

Key storage is not deployed in this module.

(b) Program memory is also located on RAM.

3. Hard Disk (or disks)

4. Display Controller

5. Keyboard Interface

6. Mouse Interface

7. Network Interface

8. Serial Port

9. Parallel Port

10. Power Supply

The configuration of this component is illustrated in Figure1.

10



Mouse

External
Source of
Power

System Bus

Network

ParallelSerialNetwork

Mouse PowerKeyboardDisplayHard Disk

Terminal
Keyboard

: Flow of status output: Flow of control input

: Flow of data, control input, and status output

: Cryptographic Boundary

MemoryCPU

Parallel PortSerial Port

InterfaceInterfaceInterface

SupplyInterfaceInterfaceControllerDrive

Display

Figure 1: Cryptographic Module Hardware Block Diagram

11



2.2 Computer Hardware, OS, and JVM

SB FIPS Java Module is tested on the following representative combinations of com-
puter hardware and OS:

1. Solaris 10, 32-bit SPARC (Binary compatible to Solaris 9)

2. Solaris 10, 64-bit SPARC (Binary compatible to Solaris 9)

3. Red Hat Linux AS 5.0, 32-bit x86 (Binary compatible to AS 2.1/3.0/4.0)

4. Red Hat Linux AS 5.0, 64-bit x86 (Binary compatible to AS 4.0)

5. Windows Vista, 32-bit x86 (Binary compatible to Windows 98/2000/2003/XP)

6. Windows Vista, 64-bit x86 (Binary compatible to Windows 64-bit XP)

7. Windows 2008 Server, 64-bit x86

The Java Runtime Environment (JRE) 1.6.0 by Sun Microsystems is used to test
SB FIPS Java Module on the platforms above.

The module will run on the JREs 1.3.1, 1.4.2, and 1.5.0, and onvarious hardware
and OS such as,

8. Any other Solaris Platforms,

9. Any other Linux Platforms,

10. Any other Windows Platforms,

11. AIX Platforms, and

12. HP-UX Platforms,

without re-compilation, while maintaining its complianceto the FIPS 140-2 Level 1
requirements. Thus, the validation status is maintained onsuch platforms.

2.3 Software Specifications

SB FIPS Java Module software is manufactured by Certicom Corp., providing services
to the Java computer language users in the form of a Java archive (JAR). The same bi-
nary is used for all identified computer hardware and OS because the JVM underneath
SB FIPS Java Module will absorb the differences of the computer hardware and OS.

The interface into SB FIPS Java Module is via Application Programmer’s Interface
(API) method calls. These method calls provide the interface to the cryptographic
services, for which the parameters and return codes providethe control input and status
output (see Figure 2).

12



SB FIPS Java Module

Java Virtual Machine

: Cryptographic Boundary

: Data  flows

Module Interface (API)

Application Program

Figure 2: Cryptographic Module Software Block Diagram

13



3 Cryptographic Module Ports and Interfaces

The physical and logical interfaces are summarized in Table1.

Table 1: Logical and Physical Interfaces
I/O Logical Interface Physical Interface
Data Input API Ethernet port
Data Output API Ethernet port
Control Input API Keyboard and Mouse
Status Output Return Code Display
Power Input Initialization Function The Power Supply is the

power interface.
Maintenance Not Supported Not Supported

14



4 Roles, Services, and Authentication

4.1 Roles

SB FIPS Java Module supports Crypto Officer and User Roles. These roles are en-
forced by this Security Policy. The Crypto Officer has the responsibility for installing
SB FIPS Java Module (see Table 2).

Table 2: Roles and FIPS Approved or Allowed Services

Service Crypto Officer User
Installation, etc.
Installation �

Uninstallation �

Initializaton � �

Deinitialization � �

Self-tests � �

Show status � �

Key zeroizaton � �

Symmetric Ciphers (AES and TDES)
Key generation (TDES only) � �

Encrypt � �

Decrypt � �

Hash Algorithms and Message Authentication (SHA, HMAC)
Hashing � �

Message Authentication � �

Random Number Generation (pRNG)
Instantiation � �

Seeding � �

Request � �

Digital Signature (DSA, ECDSA, RSA)
Key pair generation � �

Sign � �

Verify � �

Key Agreement (DH, ECDH, ECMQV)
Key pair generation � �

Shared secret generation � �

Key Wrapping (RSA)
Key pair generation � �

Wrap � �

Unwrap � �

In order to operate the module securely, it is the Crypto Officer and User’s respon-
sibility to confine calls to those methods that have been FIPS140-2 Approved. Thus,
in the approved mode of operation, all Roles shall confine themselves to calling FIPS
Approved algorithms, as marked in Table 3.

15



4.2 Services

SB FIPS Java Module supports many cryptographic algorithms. The set of crypto-
graphic algorithms supported by SB FIPS Java Module are given in Table 3.

Table 3: Supported Algorithms and Standards

Algorithm FIPS Cert
Approved Number
or Allowed

Block Ciphers DES (ECB, CBC, CFB64, OFB64)
TDES (ECB, CBC, CFB64, OFB64) � #686
[FIPS 46-3]
DESX (ECB, CBC, CFB64, OFB64)
AES (ECB, CBC, CFB128, OFB128, � #804
CTR, CCM, CMAC, GCM) [FIPS 197]
ARC2 (ECB, CBC, CFB64, OFB64)
[RFC 2268]

Stream Cipher ARC4
Hash Functions SHA-1 [FIPS 180-2] � #802

SHA-224 [FIPS 180-2] � #802
SHA-256 [FIPS 180-2] � #802
SHA-384 [FIPS 180-2] � #802
SHA-512 [FIPS 180-2] � #802
MD5 [RFC 1321]
MD2 [RFC 1115]

Message HMAC-SHA-1 [FIPS 198] � #444
Authentication HMAC-SHA-224 [FIPS 198] � #444

HMAC-SHA-256 [FIPS 198] � #444
HMAC-SHA-384 [FIPS 198] � #444
HMAC-SHA-512 [FIPS 198] � #444
HMAC-MD5 [RFC 2104]

RNG ANSI X9.62 RNG [ANSI X9.62] � #462
DRBG [NIST SP 800-90] � #1

Digital DSA [FIPS 186-2] � #296
Signature ECDSA [FIPS 186-2, ANSI X9.62] � #91

RSA PKCS #1 v1.5 [PKCS #1 v2.1] � #386
RSA PSS [PKCS #1 v2.1] � #386
ECQV

Key Agreement DH [ANSI X9.42] �
ECDH [ANSI X9.63] �
ECMQV [ANSI X9.63] �

Key Wrapping RSA PKCS #1 v1.5 [PKCS #1 v2.1] �
RSA OAEP [PKCS #1 v2.1] �
ECIES [ANSI X9.63]

The TDES, AES (ECB, CBC, CFB128, OFB128, CTR, CCM, CMAC, and GCM
modes), SHS (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512), HMAC-SHS

16



(HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA256, HMAC-SHA-384, and HMAC-
SHA-512), RNG (ANSI X9.62 RNG, NIST SP 800-90 DRBG), DSA, RSAPKCS
#1, and ECDSA algorithms have been validated to comply with FIPS. SB FIPS Java
Module also supports FIPS allowed key establishment techniques (key agreement and
key wrapping), DH, ECDH, ECMQV, and RSA PKCS #1. In order to operate the
module in compliance with FIPS, only these FIPS Approved or allowed algorithms
should be used.

DES, DESX, AES (CCM* mode), ARC2, ARC4, MD5, MD2, HMAC-MD5, ECQV,
and ECIES are supported as non FIPS Approved algorithms. In order to operate the
module in compliance with FIPS, these algorithms should notbe used.

Table 4 summarizes the keys and CSPs used in the FIPS mode.

Table 4: Key and CSP, Key Size, Security Strength, and Access

Algorithm Key and CSP Key Size Strength Roles Access
AES key 128-256 bits 128-256 Officer, Use

bits User
TDES key 112 bits 112 bits Officer, Create, Read,

User Use
HMAC key 160-512 bits 80-256 Officer, Use

bits User
pRNG seed key, seed 160 bits 80 bits Officer, Use

User
DSA key pair 1024-15360 80-256 Officer, Create, Read,

bits bits User Use
ECDSA key pair 160-571 bits 80-256 Officer, Create, Read,

bits User Use
RSA key pair 1024-15360 80-256 Officer, Create, Read,
Signature bits bits User Use
DH static/ephemeral 1024-15360 80-256 Officer, Create, Read,

key pair bits bits User Use
ECDH static/ephemeral 160-571 bits 80-256 Officer, Create, Read,

key pair bits User Use
ECMQV static/ephemeral 160-571 bits 80-256 Officer, Create, Read,

key pair bits User Use
RSA key pair 1024-15360 80-256 Officer, Create, Read,
Key Wrapping bits bits User Use

4.3 Operator Authentication

SB FIPS Java Module does not deploy authentication mechanism. The roles of Crypto
Officer and User are implicitly selected by the operator.

17



5 Finite State Model

The Finite State model contains the following states:

� Installed/Uninitialized

� Initialized

� Self-Test

� Idle

� Crypto Officer/User

� Error

The following is the important features of the state transition:

1. When the module is installed by the Crypto Officer, the module is in the In-
stalled/Uninitialized state.

2. When the initialization command is applied to the module,i.e., the module is
loaded on the memory, turning to the Initialization state. Then, it transits to the
Self-Test state automatically, running the Power-up Tests. While in the Self-Test
state, all data output via the data output interface is prohibited. On success the
module enters Idle; on failure the module enters Error and the module is dis-
abled. From the Error state the Crypto Officer may need to re-install to attempt
correction.

3. From the Idle state (which is only entered if Self-Tests have succeeded), the
module can transit to the Crypto Officer/User state when an API method is called.

4. When the API method has completed successfully, the statetransits back to Idle.

5. If the Conditional Test (Continuous RNG Test or Pair-wiseConsistency Test)
fails, the state transits to Error and the module is disabled.

6. When On-demand Self-Test is executed, the module enters the Self-Test state.
On success the module enters Idle; on failure the module enters Error and the
module is disabled.

7. When the de-initialization command is executed, the module goes back to the
Installed/Uninitialized state.

18



6 Physical Security

Physical security is not applicable to this software moduleat Level 1 Security.

19



7 Operational Environment

This module is to be run in single user operational environment, where each user ap-
plication runs in virtually separated independent space. Note that modern Operating
Systems such as UNIX, Linux, and Windows provide such operational environment.

20



8 Cryptographic Key Management

SB FIPS Java Module provides the underlying method to support FIPS 140-2 Level 1
key management. The user will select FIPS Approved algorithms and will handle keys
with appropriate care to build up a system that complies withFIPS 140-2. It is the
Crypto Officer and User’s responsibility to select FIPS 140-2 validated algorithms (see
Table 3).

8.1 Key Generation

SB FIPS Module provides FIPS 140-2 compliant key generation. The underlying ran-
dom number generation uses a FIPS Approved method, the ANSI X9.62 RNG [4] or
the DRBG [9].

8.2 Key Establishment

SB FIPS Java Module provides the following FIPS allowed key establishment tech-
niques [5]:

1. Diffie-Hellman (DH)

2. EC Diffie-Hellman (ECDH)

3. ECMQV

4. RSA PKCS #1 v1.5

5. RSA OAEP

The RSA key wrapping techniques above are based on the PKCS #1v2.1 standard, and
are used to transport keys.

The ECDH and ECMQV key agreement technique implementationssupport elliptic
curve sizes from 160 bits to 571 bits that provide between 80 and 256 bits of security
strength. The DH key agreement technique implementation supports modulus sizes
from 512 bits to 15360 bits that provide between 56 and 256 bits of security strength,
where 1024 bits and above must be used to provide minimum of 80bits of security. The
RSA implementation supports modulus sizes from 512 bits to 15360 bits that provide
between 56 and 256 bits of security strength, where 1024 bitsand above must be used
to provide minimum of 80 bits of security.

It is the users responsibility to ensure that the appropriate key establishment tech-
niques are applied to the appropriate keys.

8.3 Key Entry and Output

Keys must be imported into or exported from the cryptographic boundary in encrypted
form using a FIPS Approved algorithm.

21



8.4 Key Storage

SB FIPS Java Module is a low-level cryptographic toolkit, and as such does not provide
key storage.

8.5 Zeroization of Keys

SB FIPS Java Module provides zeroizable interfaces to key objects which implement
zeroization methods. Keys are zeroized when the zeroization method is invoked. Also,
zeroization of all keys and CSPs are performed in the finalizing methods of the objects;
JVM executes the finalizing methods every time it operates garbage collection.

22



9 Self-Tests

9.1 Power-up Tests

9.1.1 Tests upon Power-up

Self-Tests are initiated automatically by the module at start-up. The following tests are
applied:

1. Known Answer Tests (KATs):
KATs are performed on TDES, AES, SHS (via HMAC-SHS), HMAC-SHS,
RNG (ANSI X9.62 RNG and NIST SP 800-90 DRBG), and RSA PKCS #1 v1.5
Signature Algorithm. For DSA and ECDSA, Pair-wise Consistency Test is used.

2. Software Integrity Test:
The software integrity test deploys ECDSA signature validation to verify the
integrity of the module.

9.1.2 On-Demand Self-Tests

On-demand self tests may be invoked by the Cryptographic Officer or User by invoking
a method, which is described in the Crypto Officer And User Guide in Appendix A.

9.2 Conditional Tests

The Continuous RNG Test is executed on all RNG generated data, examining the first
160 bits of each requested random generation for repetition. The RNGs implemented
are ANSI X9.62 RNG and NIST SP 800-90 DRBG. This ensures that the RNG is not
stuck at any constant value.

Also, upon each generation of a RSA, DSA, or ECDSA key pair, the generated key
pair is tested of their correctness by generating a signature and verifying the signature
on a given message as a Pair-wise Consistency Test.

9.3 Failure of Self-Tests

Failure of the Self-Tests places the cryptographic module in the Error state, wherein
no cryptographic operations can be performed. If any Self-Test fails, the cryptographic
module will throw an exception.

23



10 Design Assurance

10.1 Configuration Management

A configuration management system for the cryptographic module is employed and has
been described in a document to the certifying lab. It uses the Concurrent Versioning
System (CVS) to track the configurations.

10.2 Delivery and Operation

Please refer to Section A.1 of Crypto Officer And User Guide inAppendix A to review
the steps necessary for the secure installation and initialization of the cryptographic
module.

10.3 Development

Detailed design information and procedures have been described in documentation sub-
mitted to the testing laboratory. The source code is fully annotated with comments, and
is also submitted to the testing laboratory.

10.4 Guidance Documents

Crypto Officer Guide and User Guide are provided in Appendix A. This appendix
outlines the operations for Crypto Officer and User to ensurethe security of the module.

24



11 Mitigation of Other Attacks

SB FIPS Java Module implements mitigation of the following attacks:

1. Timing attack on RSA

2. Attack on biased private key of DSA

11.1 Timing Attack on RSA

When employing Montgomery computations, timing effects allow an attacker to tell
when the base of exponentiation is near the secret modulus. This leaks information
concerning the secret modulus.

In order to mitigate this attack, the following is executed:The bases of exponenti-
ation are randomized by a novel technique that requires no inversion to remove (unlike
other blinding methods e.g. BSAFE Crypto-C User Manual v 4.2).

Note that Remote Timing Attacks are Practical:
http://crypto.stanford.edu/ dabo/papers/ssl-timing.pdf

11.2 Attack on Biased Private Key of DSA

The standard for choosing ephemeral values in DSA signatureintroduce a slight bias.
Means to exploit these biases were presented to ANSI by D. Bleichenbacher.

In order to mitigate this attack, the following is executed:The bias in the RNG is
reduced to levels which are far below the Bleichenbacher attack threshold.

Change Notice 1 of FIPS 186-2 is published to mitigate this attack:
http://csrc.nist.gov/CryptoToolkit/tkdigsigs.html

25



A Crypto Officer And User Guide

A.1 Installation

In order to carry out a secure installation of SB FIPS Java Module, the Crypto Officer
must follow the procedure described in this section.

A.1.1 Installing

The Crypto Officer is responsible for the installation of SB FIPS Java Module. Only
the Crypto Officer is allowed to install the product. The Crypto Officer must have
administrative privileges on the computer.

Place the cryptographic module,EccpressoFIPS.jar, in CLASSPATH or as
an installed extension.

A.1.2 Uninstalling

Remove the jar files from the computer hardware.

A.2 Commands

A.2.1 Initialization

FIPSManager.getInstance().activateFIPSMode()
This method runs a series of Self-Tests on the module. These tests examine the

integrity of the shared object, and the correct operation ofthe cryptographic algorithms.
If these tests are successful, the module will be enabled andbe placed into FIPS mode.

A.2.2 Deinitialization

FIPSManager.getInstance().deactivateFIPSMode()
This method de-initializes the module.

A.2.3 Self-Tests

FIPSManager.getInstance().runSelfTests()
This method runs a series of Self-Tests, and returns if the tests are successful, oth-

erwise, an exception is thrown. These tests examine the integrity of the shared object,
and the correct operation of the cryptographic algorithms.If these tests fail, the mod-
ule will be disabled. Section A.3 of this document describeshow to recover from the
disabled state.

A.2.4 Show Status

Status can be found by calling two boolean methods,
FIPSManager.getInstance().isFIPSMode() and

26



FIPSManager.getInstance().requestCryptoOperation(). If both meth-
ods return true, the module is in FIPS mode; If either method returns false, the module
is not in FIPS mode.

A.3 When Module is Disabled

When SB FIPS Java Module becomes disabled, attempt to bring the module back to the
Installed state by calling the deinitialization method, and then to initialize the module
using the initialization method. If the initialization is successful, the module is recov-
ered. If this attempt fails, uninstall the module and re-install it. If the module is ini-
tialized successfully by this re-installation, the recovery is successful. If this recovery
attempt fails, it indicates a fatal error. Please contact Certicom Support immediately.

27


